勇于冒险 甘于艰苦 乐于和谐

Adventurous Arduous Amiable

2020-11-19 | Research

SUSTech researchers create super-resolution “street view” of intracellular organelles’ interactions

The study of organelles’ dynamics and their interactions have been limited by optical diffraction. Recently, teams from the Chair Prof. Dayong Jin at SUSTech and Prof. Xi Peng (Peking University) successfully created a super-resolution “street view” of intracellular organelles’ interactions and has this published in Nature Communications. This is the first time that researchers get the dynamics of lipid heterogeneity inside subcellular organelles with optical imaging technology. They have developed a Spectrum and Polarization Optical Tomography (SPOT) technique, which can resolve the membrane morphology, polarity, and phase from the intensity, spectrum, and polarization, respectively. Combined with lipophilic probes, the team successfully revealed more than ten types of organelles simultaneously and analyzed their sophisticated lipid dynamics. A cell is a self-efficient “micro-world” with various organelles responsible for nutrition import, metabolism, endocrine modulation, protein manufacturing, waste transportations, and all the efficient communications. The study of organelles’ dynamics and their interactions will help us understand the cell functions and diagnose the cause of diseases, as well as develop potential drug treatments. As widely-used fluorescence microscopy has limits in the color and type of fluorescent dyes and in temporal and spatial resolutions, it is extremely difficult to get simultaneous imaging of multiple organelle species. Lipid membranes in subcellular compartments synergistically regulate biophysical membrane properties, membrane protein function, and lipid-protein interactions. Despite its significant role in biochemical function and interaction of subcellular organelles, due to their similar chemical composition, it is challenging to study the classification and interaction of different types of lipid membranes and observe their dynamics for a long time. Compared with the other existing fluorescence microscopy techniques, SPOT is superior in optical throughput that correlatively obtains the high-dimensional information from six raw images within tens of milliseconds. SPOT’s optical section ability improves the measurement accuracy of polarity and phase. This is the first time that researchers quantitatively study the lipid heterogeneity inside subcellular organelles. Figure 1 Heterogeneity of subcellular lipid membranes revealed by SPOT. With SPOT, the lipid heterogeneity on the outer membrane and the cristae of mitochondria, as well as lipid dynamics through endosome maturation, can be clearly imaged in real-time. With the new imaging platform established at SUSTech, researchers observed the multi-organelle interactive activities of cell division, lipid dynamics during the plasma membrane separation, tunneling nanotubules formation, and mitochondrial cristae dissociation. Figure 2 Time-lapse high-dimensional super-resolution imaging of the late-stage division of two U2-OS cells Figure 3 Dynamic changes of lipid membrane during mitochondrial cristae dissociation Most microscopes can only image four or fewer color channels, far less than the types of intracellular organelles. The synergistic use of membrane morphology, lipid polarity, and the lipid phase can classify more than ten types of organelles. SUSTech Research Assistant Professor Karl Zhanghao is the co-first author and the co-corresponding author of the work. His contribution includes: (1) Super-resolution Dipole Orientation Mapping (SDOM) technique, (Light: Sci. Appl. 2016, https://doi.org/10.1038/s41467-019-12681-w, highlighted by Nat. Methods, https://doi.org/10.1038/nmeth.4061); (2) polarized Structured Illumination Microscopy (pSIM) technique, (https://10.1038/s41467-019-12681-w, highlighted by Nat. Methods, https://doi.org/10.1038/s41592-019-0682-6); (3) pSIM with improved imaging resolution (Opt. Express, https://doi.org/10.1364/OE.395092), and low-cost SIM with laser interference and digital micro-mirror device (Appl. Phys. Lett. 2020, https://doi.org/10.1063/5.0008264). Doctoral students Wenhui Liu from Tsinghua University, and Meiqi Li from Peking University are the co-first authors of this work. This work has been supported by the National Natural Science Foundation of China, National Key Research and Development Program of China, Beijing Natural Science Foundation, and Shenzhen Science and Technology Program. Article Link:https://doi.org/10.1038/s41467-020-19747-0

2020-10-27 | Research

SUSTech professors achieve breakthrough in electronic blood vessels

Chen HANG, Ran XIAO | 10/27/2020 27   Researchers from Southern University of Science and Technology (SUSTech) and Fuwai Hospital of the Chinese Academy of Medical Sciences ( referred to as “Fuwai Hospital”) have developed electronic blood vessels that can be actively tuned to address subtle changes in the body after implantation. The research, published in the journal Matter, entitled “Electronic Blood Vessel.” By using poly(L-lactide-co-ε-caprolactone) (PLC), the electronic blood vessels are made to encapsulate liquid metal to achieve the flexible and biodegradable circuit. It could also overcome the limitations of conventional tissue-engineered blood vessels (TEBVs), which serve as passive scaffolds., This could be achieved by coordinating with other electronic devices to deliver genetic material, enable controlled drug release, and facilitate the formation of new endothelial blood vessel tissue. The electronic blood vessels could integrate flexible electrons with three layers of blood vessel cells to imitate and surpass natural blood vessels. It can effectively promote cell proliferation and migration in the wound healing model through electrical stimulation. It can controllably deliver genes to specific parts of the blood vessel through electro-transfection. Through a 3-month in vivo study of the rabbit carotid artery replacement model, the authors evaluated the electronic blood vessel’s efficacy and biological safety in the vascular system. They confirmed its patency through ultrasound imaging and angiography. The research paves the way for the integration of flexible, degradable bioelectronics into the vascular system, which can be used as a platform for further treatments, such as gene therapy, electrical stimulation, and electronically controlled drug release. Electronic blood vessels show the potential to play a key role in the treatment of cardiovascular disease. In the treatment of cardiovascular disease through coronary artery bypass grafting, the existing small diameter (<6 mm) tissue-engineered blood vessels (TEBV) have not yet met clinical needs. The methods used in most studies only provide TEBV with a stent that provides mechanical support, which mainly relies on the remodeling process of host tissues but has obvious limitations in helping to regenerate new blood vessels. Specifically, the complex interaction between blood flow and TEBV usually causes resonance reactions, leading to problems such as thrombus formation and neointimal hyperplasia. Instead, the new generation of TEBV should have enough apical stents to provide mechanical support and the ability to respond and integrate with the remodeling process actively to provide adaptive treatment after implantation. In Situ Monitoring of the Electronic Blood Vessel (A) Schematic of the electronic blood vessel in the carotid artery of the rabbit. (B and C) An end-to-end anastomosis procedure of electronic blood vessel implantation in carotid arteries of rabbits (n = 6). The dotted frames (B and C)outline the margin of the native carotid artery and the implanted electronic blood vessel. The white arrows (C) indicate the two ends of the electronic blood vessel. Scale bar, 1 cm. (D–G) In situmonitoring of the electronic blood vessel by Doppler ultrasound imaging 3 months post-implantation. Representative images from at least three different animals. (D and E) The real-time blood flow at the operational site and the synchronized ultrasound pulses. The asymmetric velocity curve indicates that the signal is from the carotid artery rather than the vein. (E) Zoom-in view of red box in (D). (F) The cross-sectional view of the blood flow. (G) The suture site (red arrows) connecting the native carotid artery and the electronic blood vessel. (H) The diameter changes in the electronic blood vessel at different times post-implantation. (I) The velocity of blood flow at the operational site (n = 18, from different rabbits at different time points). (J and K) In situ monitoring by arteriography 3months post-implantation. (J) Image before injecting the contrastmedium. Red box indicates the position of the implanted electronic blood vessel. Scale bar, 1 cm. (K) Image after injecting the contrast medium. Red box indicates the position of the implanted blood vessel. Red arrows indicate the suture sites connecting the native carotid artery and the electronic blood vessel. Scale bar, 1 cm. The team uses a PTFE mandrel, forming a 3D multi-layered tubular structure with PLC-based metal-polymer conductor (MPC) membranes. The inner diameter of the electronic blood vessel is about 2 mm, which is flexible and degradable. The MPC circuit has excellent conductivity and can be well distributed in the three-dimensional multilayer tubular structure. Studies have found that electronic blood vessels also have excellent cell safety, including the three cultured vascular cells (human umbilical vein endothelial cells, human aortic smooth muscle cells, and human aortic fibroblasts). The team also constructed a 3D electrical function model to stimulate endothelial cells in vitro through electrochemical workstations to promote their proliferation and migration. Simultaneously, three kinds of blood vessel cells were patterned on the 3D electronic blood vessel, and the GFP plasmid was electroporated in vitro by an electroporation instrument. After two days of culture, the expression of the plasmid was observed. The team chose rabbits from New Zealand as the animal model, replacing the common carotid artery with electronic blood vessels. The implanted electronic blood vessels were monitored by Doppler ultrasound imaging and arteriography. According to Doppler ultrasound imaging, three months after implantation, the electronic blood vessel allows stable blood flow to pass, showing the electronic blood vessel’s excellent patency. In the future, the electronic blood vessel can be integrated with other electronic components and devices to achieve diagnostic and therapeutic functions. This will enhance significantly personalized medical functions by establishing a direct connection in the blood vessel tissue-machine interface. Shiyu Cheng, Chen Hang, and Li Ding are the joint first authors of the paper, and Yan Zhang (Fuwai Hospital) and Xingyu Jiang (SUSTech)are the corresponding authors. Link to the paper: https://www.sciencedirect.com/science/article/pii/S2590238520304938

2020-10-10 | Research

Improving quality of biomedical imaging with new agents

Chris Edwards | 10/03/2020 40 Optical imaging has emerged as one of the promising imaging techniques in both research and clinical practice. Photoacoustic imaging and fluorescent imaging are the two leading representatives of optical-related imaging approaches. Their imaging qualities highly rely on contrast agents. The ideal photoacoustic and fluorescent agent is still to be found. The theoretical system that guides the construction of efficient contrast agents has not been widely established. Associate Professor Kai Li (Biomedical Engineering – BME) teamed up with several research teams. They have made significant progress in designing near-infrared two-zone imaging materials and biomedical diagnosis. Their research outcomes have been published in Angewandte Chemie International Edition (Angew Chem Int Ed), Biomaterials, and Research. The teams verified their design concepts and strategies through theoretical calculations. They obtained various high-performance photoacoustic and fluorescent imaging materials with optical activity in the second near-infrared window (NIR-II, 1000-1700 nm). They have applied them in different research fields, such as vascular imaging and tumor detection. The first paper at Angew Chem Int Ed. was titled “An Ester‐substituted Semiconducting Polymer with Efficient Nonradiative Decay Enhances NIR‐II Photoacoustic Performance for Monitoring of Tumor Growth.” The research teams synthesized several thiadiazoloquinoxaline (TQ)-based semiconducting polymers (SPs) with a broad absorption covering the NIR-I to NIR-II regions. The excited s-BDT-TQE shows a large dihedral angle, narrow adiabatic energy, and low radiative decay. It is attributed to the strongly electron-deficient ester-substituted TQ-segment. The more vigorous molecular motions trigger higher reorganization energy. They yield an efficient photo-induced nonradiative decay. BDT-TQE SP-cored nanoparticles with twisted intramolecular charge transfer (TICT) exhibit a high NIR-II photothermal conversion efficiency (61.6%). They also exhibit the preferable PA tracking in-situ hepatic tumor growth for more than 20 days. The research teams proposed a new approach that adjusted the TICT effect in polymer chains for augmented PNRD property. It enhanced the photothermal conversion & photoacoustic performance for monitoring in-situ tumor growth in mice. BME masters student Menglei Zha is the co-first author, along with City University of Hong Kong (CityU) Dr. Xiangwei Lin and National Kaoshiung University of Science and Technology (NKUST), Professor Jen-Shyang Ni. Dr. Kai Li is a co-corresponding author of this paper, with CityU Professor Lidai Wang and NKUST Dr. Jen-Shyang Ni. The authors are grateful to the National Natural Science Foundation of China, Guangdong Innovative and Entrepreneurial Research Team Program, the Shenzhen Science and Technology Program, Research Grants Council of the Hong Kong Special Administrative Region, and Fundamental Research Funds for the Central Universities for financial support. The authors also acknowledge the Center for Computational Science and Engineering at SUSTech for theoretical calculation support and SUSTech Core Research Facilities for their technical support. Figure 1. Improve the nonradiative transition efficiency of semiconductor polymers to achieve long-term real-time monitoring of tumor growth via NIR-II photoacoustic imaging The paper published in Biomaterials was titled, “Self-assembled AIEgen nanoparticles for multi-scale NIR-II vascular imaging.” It looked at how fluorogens with aggregation-induced emission (AIEgens) have been intensively explored in biomedical applications. One primary strategy to bring these hydrophobic AIEgens into the aqueous biological environment is to encapsulate them in nanoparticles with functionalized polymeric matrices. Most fluorophores are insoluble in water, requiring post-modification like amphiphilic polymer encapsulation. The traditional preparation of AIEgen nanoparticles is convenient. These methods are hard to fulfill the required uniform size and stable loading efficiency. The exploration of reliable strategies that can afford AIE nanoparticles with the above requirements with minimized batch-to-batch variation remains challenging. The research team designed amphiphilic AIEgens, built with a hydrophobic donor-acceptor-donor (D-A-D) core and hydrophilic polyethylene glycol (PEG) chain. These AIEgens can self-assemble into uniform nanoparticles with average sizes of ~35 nm, showing an emission maximum beyond 1000 nm and quantum yields (QYs) above 10%. The team used the bright AIE nanoparticles for multi-scale intravital vascular fluorescence imaging in the second near-infrared window (NIR-II, 1,000-1,700 nm) in mouse and rabbit models. Advanced AIE nanoparticles with efficient self-assembly strategies were constructed for angiography. The early stages of demonstration for the AIEgen nanoprobes for NIR-II imaging in large animal models (rabbits with an average weight of 3 kg) will inspire more research opportunities in designing advanced NIR-II probes and promoting the translational studies of this emerging imaging technique. BME doctoral student Yaxi Li and Shenzhen Institute of Advanced Technology (SIAT) Dr. Dehong Hu are the co-first authors. Dr. Kai Li and SIAT Dr. Hairong Zhang are the co-corresponding authors of this paper. This work was supported by the National Natural Science Foundation of China, Guangdong Innovative and Entrepreneurial Research Team Program, the Science and Technology Innovation Committee of Shenzhen Municipality, the Shenzhen key laboratory of ultrasound imaging and therapy, and CAS key laboratory of health informatics. The authors also acknowledge the Center for Computational Science and Engineering at SUSTech for theoretical calculation support and SUSTech Core Research Facilities for technical support. Figure 2. Self-assembly strategy to prepare aggregation-induced luminescence nanoprobes to achieve multi-scale NIR-II vascular imaging The paper published in Research was titled, “Centimeter-Deep NIR-II Fluorescence Imaging with Nontoxic AIE Probes in Non-Human Primates.” In biomedical fluorescence imaging, AIEgens plays an increasingly important role. However, there is still a lack of in-depth toxicological research and deep imaging evaluation in primate models. The research team studied the high intravenous injection dose of AIE probes, 30 times the standard clinical dosage in primate blood and histological analysis report. The results showed that the AIE probes were in the normal range after 35 days of metabolism in primates, which proved that the AIE probes were not biologically toxic. The research team also utilized the biological safety and high-brightness optical performance of the AIE probe. They successfully achieved a depth of 1.5cm blood vessel imaging in primates, breaking the current limit of near-infrared two-zone fluorescence imaging at the millimeter level. The two features of NIR-II AIE probes enable them to become promising fluorophore candidates for angiography and lymphadenopathy. They could pave the way to promote clinical translation of NIR-II AIE probes in human clinical trials. Dr. Kai Li is a co-corresponding author of this paper, with the Hong Kong University of Science and Technology (HKUST) Professor Ben Zhong Tang and SIAT Dr. Hairong Zheng. Additional contributions came from the National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital & Shenzhen Hospital. Figure 3. The NIR-II AIE probe achieves high signal-to-noise ratio blood vessel imaging in primates with a depth of 1.5 cm The second paper published in Angew Chem Int Ed. was titled “Sub‐10 nm Aggregation‐Induced Emission Quantum Dots Assembled by Microfluidics for Enhanced Tumor‐Targeting and Reduced Retention in the Liver.” AIE dots (AIE dots) obtained by hybridization with phospholipids have been widely used in biomedical imaging. However, the particle size of the AIE dots prepared in this traditional method is usually larger than 25 nm. Due to the interception of the liver, spleen, and other organs, the ideal imaging effect is often difficult to obtain with such large AIE dots. The research team developed a microfluidic chip with a double spiral mixing pipe (pipe width 300 microns, height 60 microns) to prepare AIE nanoparticles. These are known as AIE quantum dots (QDs), separate from the larger AIE dots. AIE QDs allow more efficient cellular uptake and imaging without surface modification of any membrane-penetrating peptides or other targeting molecules. NIR-II AIEgens were used to demonstrate that AIE QDs can achieve high contrast at the tumor as small as 80 mm3 and evade the liver more efficiently than AIE dots. The sub-10 nm organic AIE QDs were successfully synthesized in a microfluidic chip, showing better in-vitro and in-vivo solid-tumor imaging than AIE dots. These AIE QDs promises a pathway for efficient cell labeling and sensitive & precise detection of the tumor. The microfluidic method may help make a broad range of multi-function AIE molecules into sub-10 nm AIE QDs. They could have immense potential in diverse biological applications. Doctor Xuanyu Li from the University of the Chinese Academy of Sciences (UCAS) is the first author, and Menglei Zha is the co-first author. Dr. Kai Li is a co-corresponding author. Additional contributions came from the BME Microfluidic Research laboratory. The research teams thank the National Key R&D Program of China, the National Natural Science Foundation of China, the Chinese Academy of Sciences, the Guangdong Innovative and Entrepreneurial Research Team Program, the Science and Technology Innovation Committee of Shenzhen Municipality, and the Tencent Foundation through the XPLORER PRIZE for financial support. The authors also acknowledge the Center for Computational Science and Engineering at SUSTech for theoretical calculation support and SUSTech Core Research Facilities for technical support. Figure 4. The new microfluidic synthesis strategy prepares sub-10 nm AIE QDs to reduce liver retention and enhance tumor targeting in tumor-bearing mice.   Related links: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202010228 https://www.sciencedirect.com/science/article/pii/S0142961220306116 https://doi.org/10.34133/2020/4074593 https://onlinelibrary.wiley.com/doi/10.1002/anie.202008564

2020-09-07 | Research

Science Technology and Innovation Commission delegation visits SUSTech

Chris Edwards | 09/09/2020   In recent days, Shenzhen Municipal Science, Technology, and Innovation Commission (STIC) Deputy Director Xuan QIU led a delegation to the Department of Biomedical Engineering (BME) at Southern University of Science and Technology (SUSTech). SUSTech University Council Chairperson Yurong GUO met with the STIC delegation, along with long-term distinguished visiting BME professor Daping WANG. At the meeting, SUSTech University Council Chairperson Yurong GUO said that SUSTech’s rapid and high-quality development is inseparable from the support of the city, the province, and the state. The ongoing support from STIC for SUSTech’s development highlights its continuing commitment to “research, innovation, and entrepreneurship.” It will focus on the development of its talent pipeline, the transformation of its technology, and global cooperation to continue to contribute to the progress of Shenzhen. STIC Deputy Director Xuan QIU affirmed the developments SUSTech and BME has made in recent years. She spoke about the policies to promote the development of the bioengineering and pharmaceutical industry in Shenzhen. She pointed out that the biological and life health industry is one of the most dynamic emerging industries in the world. Numerous advantages are available to SUSTech, so the ongoing scientific and technological work conducted at SUSTech would encourage the implementation of the strategic goals for regional development. SUSTech Acting Vice President Yusheng ZHAO and Office of Research Deputy Director Yi GONG introduced the major scientific progress of SUSTech and related research projects. BME head Xingyu JIANG spoke about the teaching and research achievements of the department. He said that it would continue to integrate world-class technologies with more robust cooperation with Shenzhen enterprises. Long-term distinguished visiting BME professor Daping WANG said that BME would continue to build several international exchanges and cooperation platforms. It will improve the level of international cooperation and exchange. They will conduct extensive scientific research exchanges and technology transformations for the city’s sustainable development.

2020-05-21 | Research

New methods for treating cancer through photothermal agents molecules developed

New strategies have been developed at Southern University of Science and Technology (SUSTech) that could see cancer treated in a less invasive manner. Photothermal therapy (PTT) using near-infrared (NIR) light-absorbing agents to generate heat for tumor ablation locally has received considerable interest in recent years. PTT has become an important research direction for cancer treatment. However, traditional PTT methods suffer from several limitations, including complex synthesis of inorganic/organic photothermal agents (PTA), using high laser power density, and tissue damage from the high-temperature PTT. The latest progress in applying low-temperature photothermal therapy examined the synthesis of small molecule PTAs with high PTCE, as there is enormous potential for biomedical applications. Associate Professor Kai Li (Biomedical Engineering) has led his research group to publish a ground-breaking paper in the high-impact academic journal, Angewandte Chemi International Edition (Angew Chem Int Ed) (IF = 12.257). The paper was titled, “Photoinduced Nonadiabatic Decay-guided Molecular Motor Triggers Effective Photothermal Conversion for Hyperthermia Cancer Therapy.” Their paper has made significant progress in studying the synthetic method of small molecule photothermal agents, and their applications in low-temperature photothermal therapy (PTT). PTT is an important research direction for cancer treatment. However, there are several side-effects and problems with traditional PTT techniques. It means that there is a significant need to develop a new photothermal agent-mediated low-temperature PTT strategy. Their paper designed a new type of organic small molecules that are based on light-induced, non-adiabatic decay (PIND) effect. The co-delivery of the photothermal molecule with a heat shock protein 70 (HSP70) inhibitor (Apo) leads to suppressed HSP70 expression and realize a high-efficiency PTT tumor treatment at 43°C. Associate Professor Jen-Shyang Ni, a fellow researcher, explained that when this sort of imine-based molecular motor is irradiated by lasers to an excited state, it will be affected by the strong intramolecular twisted charge transfer effect (TICT). The TICT supports passing through the conical cross (CI) process, which releases energy back to the ground state. It can be considered as a photo-induced non-adiabatic decay (PIND) phenomenon, which has almost no fluorescence emission. They can better convert light to heat and exhibits up to 90% efficiency, compared to existing commercial products. Figure 1. The photophysical properties and working principle of light-induced non-adiabatic decay (PIND) organic small molecules In animal experiments, the researchers developed a delivery system for tumor cells that used the thermal response technique. Following further experimental processes, they showed that their technique had a significantly better treatment effect than the control group. It proved the effectiveness of a combined treatment strategy, showing an efficient and straightforward photothermal conversion molecular motor that negates the need for introducing long-branch organic alkyl chains or other bulky substituents. Effectively breaking through the traditional limitations has opened many doors for new ideas in the development of small molecule, high-efficiency, photothermal agents. Figure 2. C6TI/Apo-Tat NPs-mediated hypothermic PTT tumor therapy. (a) Temperature curve of 808 nm laser (0.5 W cm-2) irradiated mice tumor site with time; (b) Tumor growth curve of tumor size with the time of different treatment groups; (c) Day 14 of different treatment groups Dissected tumor photographs; (d) HSP70 immunofluorescence staining and TUNEL staining analysis of in situ tumor tissue sections, scale = 100 μm   SUSTech is the first communication unit of the thesis. Associate Professor Jen-Shyang Ni is a co-first author of the paper. Associate Professor Kai Li was the sole correspondent author of the paper. Other significant contributions came from the HKUST-Shenzhen Research Institute and the City University of Hong Kong Shenzhen Research Institute. The authors received support from the National Natural Science Foundation of China, the Science and Technology Plan of Shenzhen, and the High-Level Special Funds of SUSTech. They also acknowledge the Center for Computational Science and Engineering at SUSTech for theoretical calculation support, and the SUSTech Core Research Facilities for technical support. All in vivo procedures were approved by the Animal Ethics Committee of the Laboratory Animal Research Center of SUSTech.   Paper link: https://www.onlinelibrary.wiley.com/doi/10.1002/anie.202002516 Group introduction Associate Professor Kai Li: http://faculty.sustech.edu.cn/lik/ Research Associate Professor Jen-Shyang Ni: http://faculty.sustech.edu.cn/nizx/

2020-04-13 | Research

Transparent models of organs to deliver better health care

Chris Edwards | 04/11/2020   The rapid development of biotechnology has seen the dramatic increase in applications for transparent models of organs for the observation and study of the delicate three-dimensional structure of organs and mechanisms of diseases. An international collaboration led by the Southern University of Science and Technology (SUSTech) has made significant progress in the construction of transparent liver organs modeling liver cancer interventional treatments, providing significant help to researchers, doctors, and patients. Assistant Professor Qiongyu Guo of Biomedical Engineering at the SUSTech led her research team to work with the National University of Singapore and Henan University to publish a paper in the high-impact academic journal, Biomaterials (IF = 10.273). The article was titled “Decellularized liver as a translucent ex vivo model for vascular embolization evaluation.”   Approximately 850,000 new cases of liver cancer are reported worldwide annually. Liver cancer has placed a heavy burden on society in many countries and is currently the leading cause of death for men under 50 years of age. Hepatocellular carcinoma (HCC), which accounts for 85%–90% of primary liver cancers, is the predominant pathological type of malignant liver tumors.   Transcatheter arterial chemoembolization (TACE), which applies embolic agents to selectively occlude tumor-supplying hepatic arteries, is currently the mainstay treatment for patients who have lost the opportunity for resection surgery. However, there is not an adequate model to evaluate embolization performance for TACE treatment, which has affected the development of new embolotherapies.   In vitro models such as microfluidics have been used to evaluate the performance of these agents. However, the materials used in the models do not correctly replicate the mechanical properties of blood vessels. The model channels are often too simple to simulate the complexities of HCC. The limited spatial resolution of X-ray-based instruments available for TAE/TACE and the lack of imageability of most solid embolic agents themselves prevent the accurate study of the penetration depth and embolization endpoints in animal models. Thus, the development of a new TACE model system that accurately evaluates embolic agents is vital for this clinical field. Figure 1. Quantitative analysis of the vascular systems of a translucent liver model The research group has proposed a new strategy for assessing vascular embolization by using decellularized whole livers as a clearing in vitro model. In recent years, decellularization has been used primarily for regenerating organs. The team developed a transparent liver by applying a strictly controlled decellularization perfusion method. They completely removed the cells while maintaining the extracellular matrix and the vascular system within the liver. The model of the liver was translucent, allowing the vascular system to be viewed through a variety of imaging tools (Figure 1). Figure 2. Evaluation of different embolic agents in a cleared, isolated liver model The researchers successfully used the translucent model to evaluate different types of embolic agents (Figure 2). They observed that the embolization endpoint of a liquid embolic agent depends strongly on the injection pressure and the location of the injection. Solid embolic agents tend to have a reduced density near the end of an embolization site. These findings confirm that particle size and penetration depth are two key factors that determine embolic distribution. Figure 3. Dynamic monitoring of embolization kinetics of liquid embolic agent iodized oil The research team also examined the embolization kinetics of TACE treatment, and for the first time, evaluated the correlation between the embolization pressure and the penetration depth as well as the liver morphologies in the decellularized liver model (Figure 3). This model enables the monitoring of the spatiotemporal location of embolic agents. The finding is critical for real-time analyses of the effectiveness of embolization formulations for TACE treatment. This research opens up new methods for developing transparent organ models for visualization research and evaluation of clinical treatment methods. It will provide more effective assessment strategies for the translational research of various biotechnologies and biomaterials.   SUSTech research assistant Yanan Gao is the first author of the paper with research assistant Zhihua Li has made vital contributions to the paper. Assistant Professor Qiongyu Guo is the corresponding author of the article, and SUSTech is the first communication unit. Additional contributions came from the National University of Singapore (Department of Biomedical Engineering, Yong Loo Lin School of Medicine, and Mechanobiology Institute), the First Affiliated Hospital of SUSTech (Shenzhen People’s Hospital), SUSTech (Materials Science and Engineering, Academy of Advanced Interdisciplinary Studies), Henan University (College of Medicine), A*STAR(Institute of Bioengineering and Nanotechnology), Singapore-MIT Alliance for Research and Technology (CAMP), and Southern Medical University (Gastroenterology Department). This research received support from the Key-Area Research and Development Program of Guangdong Province, National Natural Science Foundation of China, the startup funding from SUSTech, and the SMART CAMP and Mechanobiology Institute of Singapore funding.  Paper link: https://www.sciencedirect.com/science/article/pii/S0142961220301010        

2020-03-30 | Latest

Biomedical Engineering Chair Professor elected as AIMBE Fellow

Chris Edwards | 03/30/2020   On March 24, Southern University of Science and Technology (SUSTech) Chair Professor of Biomedical Engineering Xingyu JIANG was elected to the College of Fellows of the American Institute for Medical and Biological Engineering (AIMBE). Dr. Jiang was nominated, reviewed, and elected by peers and members of the College of Fellows for “outstanding contributions in using micro-/nano-materials for multiplexed assays that improves the quality of healthcare and efficiency of biomedical research.” Under special procedures, Dr. Jiang was remotely inducted along with 156 colleagues who make up the AIMBE College of Fellows Class of 2020. The American Institute for Medical and Biological Engineering (AIMBE) is a non-profit organization that represents the most accomplished individuals in the fields of medical and biological engineering. AIMBE’s mission is to provide leadership and advocacy in medical and biological engineering for the benefit of society. It is an organization of leaders in medical and biological engineering, consisting of academic, industrial, professional society councils and elected fellows. The College of Fellows is comprised of experts in areas such as clinical practice, industrial practice, and education. Potential Fellows go through a rigorous peer-review and selection process. Chair Professor Xingyu JIANG’s research interests include microfluidic chips and nano-biomedicine. Dr. Xingyu JIANG received funding from the National Outstanding Youth Science Fund in 2010, the Top Youth in 2013, the Special Allowance of the State Council in 2014, the Innovative Talents Promotion Plan of the Ministry of Science and Technology, and the Chief Scientist in the Key Special Project of the National Key Research and Development Plan of the Ministry of Science and Technology in 2019. He was one of the inaugural winners of the Xplorer Prizes from the Tencent Foundation in 2019. He has published more than 300 papers, and his research directions include microfluidic chips and nano-biomedicine.

2020-03-10 | Research

Killing bacteria with light and oxygen just got easier

Chris Edwards | 03/09/2020   A new study by Southern University of Science and Technology (SUSTech) has found a new form of luminescent material ideal for bacterial treatments that had previously shown themselves to be resistant to a broad range of drugs. Department of Biomedical Engineering Associate Professor Li Kai led the research published in the high-impact journal Angewandte Chemie International Edition (Angew Chem Int Ed). The paper was titled “Planar AIEgens with Enhanced Solid‐State Luminescence and ROS‐Generation for Multidrug‐Resistant Bacteria Treatment.” Figure 1. The design strategy of fluorine replacing planar AIEgens Fluorescent materials have shown great potential in optoelectronics and biomedical engineering. However, one of the major flaws behind traditional fluorophores is that they suffer from aggregation-caused quenching (ACQ), a situation where the collection of fluorophores reduces the intensity of luminescence. The discovery of various types of aggregation-induced luminescent agents (AIEgens) provides a promising solution to address this challenge. However, it is still vital to find a simple and effective method to enhance solid-state luminescence of planar AIEgens, which would find significant commercial applications. Figure 2. UV-vis and fluorescence spectra of planar AIEgens (DMA-AB-F and F-AB-DMA). The research team designed and synthesized three pairs of planar AIEgens and studied their photophysical properties, intending to apply molecular engineering techniques to restrict the movement of the AIEgens in their aggregated state. Their results showed that they were able to inhibit their molecular movement and their non-radiative transition through the introduction of fluorine atoms to the aromatic ring. They hypothesized that the planar AIEgens they had developed would improve AIE performance and effectively promote the generation of ROS. Figure 3. Antibacterial effect in vitro. The research team tested the new AIEgens as photosensitizers against multidrug-resistant bacteria under a mouse model. In vitro testing (testing outside the body of a living organism) showed that their AIEgens would effectively kill MDR E. Coli and MRSA. In the follow-up in vivo testing on mice, they were able to show that their AIEgens would kill significantly more bacteria following photodynamic therapy than the control group. Figure 4. In vivo antibacterial effect. The study has proved a new direction in the treatment of multi-drug resistant bacterial infections through the use of reactive oxygen species expressed through the use of planar AIEgens. This unique approach provides more opportunities for researchers to develop a broad range of AIE photosensitizers for use in the biomedical industry. Research Associate Professor Ni Jen-Shyang and masters students Min Tianling were the co-first authors. Associate Professor Li Kai was the correspondent author. The contributing units were the Department of Biomedical Engineering at SUSTech, the HKUST-Shenzhen Research Institute (SRI), and the Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences. The authors are grateful to the National Natural Science Foundation of China, the Thousand Young Talents Program, and the Science and Technology Plan of Shenzhen for financial support. The authors also acknowledge the Center for Computational Science and Engineering at SUSTech for theoretical calculation support and SUSTech Core Research Facilities for technical support. Paper link: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202001103

2020-03-05 | Research

Nanoscale spectroscopy reveals the bright high-tech future

Nanoscale technology is supporting more high-tech devices used in modern society than currently appreciated. The development and manipulation of nanostructures have developed rapidly in recent years and allowed for advances such as imaging and sensing devices with touch screens and high-resolution light-emitting diode (LED) displays. Department of Biomedical Engineering (BME) Chair Professor Dayong Jin was part of an international collaborative research team that was published on March 4 in the high-impact journal, Nature. Their review article was titled, “Single-particle spectroscopy for functional nanomaterials.” The piece focuses on the luminescent nanoparticles central to many advances with the opportunities and challenges for these technologies to reach full potential. It sought to understand how single nanoparticles behave, so scientists can develop new tools that support a broad range of modern applications such as personalized medicine, cybersecurity, and quantum communication. The development of single-molecule measurements and the rapid progress in optical microscopy have made it possible to observe the fluorescence of single photons. Advances in this field could lead researchers to discover the underlying photophysics from the nanoscale – with “plenty of room at the bottom.” The article found many promising material candidates for a wide range of commercial and industrial applications, from quantum dots to carbon dots, fluorescent nano-diamonds, and nanoparticles fabricated from obscure minerals such as perovskite. There are increasing challenges as scientists step ever closer to optimal nanoparticle design, mainly as there is an increasing demand for smaller and more efficient nanoparticles with desirable characteristics. The research team focused on the development of uniform nanoparticles that are just a few nanometers in size. It is a significant challenge, along with controlling their size and shape, as new knowledge is needed about nanoparticle surface chemistry to better understand these properties, as well as their optical properties. In a dynamic field such as nanoparticles, there is seemingly no limit except the ability of science and engineering to integrate their knowledge and skill. The paper examines opportunities for continued fundamental research that pushes at the cutting-edge of nanoscale technologies. Professor Dayong Jin believes that there will be a future where nanoparticles can be used to develop biomedical signatures that answer personalized drug therapy questions from a single drop of blood. He highlighted the point that everyday technology such as smartphones and touch screens are now the result of decades of research by scientists and engineers trying to answer fundamental scientific questions. Professor Dayong Jin joined SUSTech in January 2019 and quickly established a research team of more than 40 people. The laboratory has built inorganic rare earth luminescent materials, organic rare earth complexes, super-resolution imaging, and time-resolved imaging research platforms. Dr. Jiajia Zhou from the Institute for Biomedical Materials and Devices (IBMD) at the University of Technology Sydney (UTS) was the first author of the paper. She worked with Dr. Alexey I. Chizik from the Third Institute of Physics at the Georg-August University of Göttingen, Prof. Steven Chu of the Department of Physics at Stanford University and SUSTech Chair Professor Dayong Jin from the Department of Biomedical Engineering. All four authors were correspondent authors. The scholars acknowledge support from the Australian Research Council (ARC), the Discovery Early Career Researcher Award Scheme, the Shenzhen Science and Technology Program, and the Australia China Science and Research Fund Joint Research Center for POCT. Article link: https://www.nature.com/articles/s41586-020-2048-8  

2019-12-17 | Research

CAE Academician lectures on biomedical technology and innovation

Chris Edwards | 12/17/2019 12 On December 15, the Chinese Academy of Engineering (CAE) Academician Cheng Jing came to Southern University of Science and Technology (SUSTech) to give an insightful lecture on “Technological Innovation, Transformation, and Application.” Department of Biomedical Engineering (BME) Head Chair Professor Jiang Xingyu chaired the meeting. Professor Cheng Jing is a Tsinghua University School of Medicine (Department of Biomedical Engineering) Chair Professor and the director of the National Engineering Research Center of Beijing Biochip Technology. He is also a member of the International Eurasian Academy of Sciences. Professor Cheng’s research is mainly focused on basic and clinical medical-related biotechnology. He has studied areas such as diagnostic and prognostic molecular typing chip technology systems that have led to biochips required for gene, protein and cell analysis. Some of his biochips have been certified by the National Medical Products Administration (NMPA) and entered clinical trials. Professor Cheng has published 145 SCI-standard papers in journals like Nature Biotechnology and 8 monographs. He has received more than 260 domestic and foreign patents (at the time of publishing) and has also won the second prize in the State Science and Technology Prizes on two separate occasions.     Professor Cheng discussed the integration of a healthy nation with biomedical engineering. He pointed out that the new biochip, using the principles of traditional Chinese medicine (TCM) visual inspection is a good example. An analysis of a patient’s eye can assist doctors in better-diagnosing problems, and thereby reducing errors. New surgeries are replacing traditional techniques, and micro-non-invasive operations have led to “no disinfection, no anesthesia and no wound” procedures.     He also highlighted the importance of proactive health prevention and chronic disease control within the ambit of Healthy China, as well as looking after the elderly in their homes. Biomedicine developments have improved our quality of life, and this should be treasured.   Professor Cheng took many questions from the enthusiastic students and faculty at the end of his presentation.  

Contacts Us

Faculty Research Building 2, 1088 Xueyuan Rd, Nanshan District, Shenzhen, Guangdong 518055, China

bme@sustech.edu.cn

关注微信公众号