ENG

勇于冒险 甘于艰苦 乐于和谐

Adventurous Arduous Amiable

2022-01-17 | 教学新闻

生物医学工程系刘泉影课题组举办The Best Paper in 2021学术沙龙活动

       2022年1月16日,生物医学工程系刘泉影课题组年终活动——The Best Paper in 2021学术沙龙在我校会议中心举行(线上线下同时进行)。会议邀请了北京大学的鲍平磊老师、中科院先进院的鲍进老师、澳门大学的伍海燕老师、腾讯AI lab的卞亚涛老师作为点评嘉宾参加,并与同学们交流研究成果。 刘泉影老师致辞        刘泉影老师对与会嘉宾的到来表示欢迎和感谢。并对参加The Best Paper的同学提出要求,希望同学们通过10分钟的演讲,能重点突出论文主旨、总体框架以及创新性。鼓励同学们在此次活动中,积极分享自己的所学所想。 现场提问和点评        会议分为上午/下午两场进行,来自刘泉影课题的博士后、科研助理以及研究生共21人参加报告,学术报告思维清晰、条理明了,充分展示了南科大人的高水平科研能力以及超强的学术报告水平。 口头汇报环节        点评嘉宾充分肯定了本次活动的意义和必要性,并就每一位同学的Paper都提出了具体意见和建议。学生们也都纷纷表示受益匪浅,通过激烈的角逐,最终评选出技术流和科学流最佳品味奖,并现场颁发了荣誉证书和奖金以资鼓励。 获奖学生合影 刘泉影课题组合影     采写:刘雯

2022-01-07 | 科研新闻

科研进展|ACS Nano:智能伤口敷料,自带换药提醒功能

功能强大的金纳米材料 大量的研究已经表明金纳米颗粒可以有效降低皮肤、肺、肠道的感染风险。在多种表面配体的帮助下,金纳米材料表现出了高效抗菌活性和优异的生物相容性。尤其是金纳米簇这一金纳米材料,不仅抗菌性能优秀,还具有荧光特性,是一种能力强大的材料。   细菌纤维素敷料 在另一方面,细菌纤维素(BC)具有高机械强度高、透光性、超软度、水吸收性能强等特点,其多孔结构也与组织的细胞基质类似,非常适合作为敷料以加速皮肤的再生。更重要的是,高度透光的细菌纤维素薄膜能够更加方便观察敷料下伤口在愈合过程中的形貌变化。   给敷料“上个闹钟” 因此,通过金纳米簇和细菌纤维素的特点,南方科技大学微流控-生物材料实验室设计了一种智能敷料,可在治疗过程中自我检测剩余纳米药物的浓度。研究将氨基苯硼酸(ABA)修饰的金纳米簇(A-GNCs)装载到细菌纤维素薄膜上形成抗菌伤口敷料,该敷料在治疗多药耐药性细菌感染伤口时可通过原位比色法实时显示剩余A-GNCs纳米药物的剩余量。A-GNCs可在紫外激发下发射明亮桔色荧光,而与此同时细菌纤维素薄膜在伤口处湿润状态下呈现透明的性质,因此BC- A-GNCs纳米复合材料会随着A-GNCs的释放显示桔色荧光强度逐渐降低的现象,从而为患者提供更换敷料的合适时间点。 相关工作以“Fluorescent and Antibacterial Aminobenzeneboronic Acid (ABA)-Modified Gold Nanoclusters for Self-Monitoring Residual Dosage and Smart Wound Care”为题发表在ACS Nano。   文章要点 一、A-GNCs的表征 对A-GNCs的表征显示,其具有2纳米左右的平均直径且晶格结构清晰,在溶液中呈现亮黄色,而在365纳米激发下发射高强度的桔色荧光(图1)。A-GNCs具有优异的抗菌性能,SEM显示A-GNCs能够破坏细菌细胞壁造成融合,从而发挥强效的抗菌作用。 图1 A-GNCs的基本表征 二、BC-A-GNCs纳米复合薄膜 细菌纤维素具有良好的机械强度和巨大的比表面积,非常适合装载A-GNCs形成敷料。实验发现,当A-GNCs溶液浓度为32 μg/mL时,几乎所有的A-GNCs都吸附在细菌纤维素薄膜上,验证了细菌纤维素的高装载容量。 随着溶液浓度进一步增加,研究发现128 μg/mL的 A-GNCs溶液能够导致最大化的装载能力,因此作者选择在这个浓度制备BC-A-GNCs纳米复合材料(BGN)。对A-GNCs 在BGN里的释放行为进行研究发现,由于部分A-GNCs存在于表面,突释行为发生在最初的3天,而在5天后,A-GNCs的累计释放量可达88%,展现了缓慢持续的释放行为。经过7天的时间,剩余的A-GNCs浓度大概在12 μg/mL(而抗菌的最小抑制浓度MIC为8.75 μg/mL),表明BGN即将失去治疗能力并且应当在该段时间内被更换(图2)。 图2 装载A-GNCs的细菌纤维素支架示意图   三、BC-A-GNCs纳米复合薄膜的抗菌性能 随后,作者研究了BGN的抗菌性能和生物相容性。研究发现,装载了A-GNCs的BGN薄膜能够抑制革兰氏阴性菌及其相应耐药菌株的增殖。在与革兰氏阴性菌及其相应耐药菌株接触24小时后,BGN展现出了非常明显的生长抑制区域。对细菌纤维素和BGN的血液生物相容性进行溶血分析可知,4小时的孵育不会对大鼠红细胞产生任何溶血作用,证明BGN作为敷料可进行血液接触应用。此外,将正常细胞放到BGN敷料上进行细胞活性检测也进一步证实了BGN具有高度的生物安全性。   四、抗耐药菌评估 最后,研究评价了BGN在革兰氏阴性菌感染伤口模型中的治疗作用。绿脓杆菌是慢性感染伤口中最常见的细菌,在治疗14天后,研究发现绿脓杆菌感染伤口的愈合面积比例达到了91 ± 3.1%,而耐药性绿脓杆菌感染伤口的愈合面积比例也达到了96 ± 2.5%,说明A-GNCs掺杂的细菌纤维素薄膜能够加速感染伤口的愈合。 由于薄膜的透光性,作者可以在日光下直接观察伤口愈合过程并定量分析剩余的A-GNCs浓度。随着时间的推移,BGN可逐渐释放A-GNCs,相应地敷料颜色变得更加暗淡,在第七天时,BGN就基本无法观察了,这表明也BGN失去了治疗能力并且应当被替换(图6)。此外,对敷料下肉芽组织生长进行观测也能够非常准确的评价伤口愈合行为。而死的或未活化组织不仅能够阻止伤口愈合过程,也会增加感染的风险。因此,通过BGN观测伤口愈合可避免敷料的频繁、不必要更换,从而减低二次伤害风险。 图3 伤口愈合评价   结论        为了可视化监测纳米药物伤口敷料,作者发展了一种新型策略,通过将纳米药物的荧光性能和支架材料的透光性相结合,可原位显示敷料中剩余药物量。在这一策略中,作者使用氨基苯硼酸改性的金纳米簇作为具有强效抗菌性能的荧光纳米药物,同时选择细菌纤维素薄膜作为透明支架材料。在伤口愈合过程中,A-GNCs的荧光强度随着释放行为的进行而逐渐降低,利用此现象可在纳米药物浓度低于最低抑菌浓度时及时更换敷料。因此,敷料状态的实时监测只需简单使用紫外光源就可以实现,而容易造成伤口破坏的敷料反复更换则可以被有效避免。        文献链接: https://pubs.acs.org/doi/10.1021/acsnano.1c06139

2021-12-22 | 科研新闻

南科大微流控-纳米医学课题组在提高HIV疫苗效力方面取得新进展

       近日,南方科技大学微流控-纳米医学课题组与中国医学科学院医学生物学研究所报道了一种二维纳米片作为免疫调节剂来提高HIV疫苗效力。研究成果以“Two dimensional nanosheets as immunoregulator improve HIV vaccine efficacy”为标题发表于《化学科学》( Chemical Science, 2022; )。        二维材料因其形态多样性、结构有孔隙在药物装载和递送方面显示出巨大的潜力,但因在引入免疫调节模块具有挑战,较难合成具有免疫调节功能的平面材料,目前还未实现将二维材料开发成免疫调节剂。以稀土元素为主的复合物已经显示出其独特的巨噬细胞调节作用,调节体内免疫应答。多种稀土元素(如铒(Er),镝(Dy),镧(La)和钕(Nd))对免疫效应细胞行为和功能具有免疫调节作用,可以调节免疫细胞的功能,而La和Nd会导致细胞膜通透性破坏细胞结构,过度诱导炎症小体激活,破坏Ca2+内流平衡,导致细胞死亡,相比而言,Er和 Dy在体内表现出更好的生物安全性。        在本研究中,研究人员设计并合成了一种新型的具有良好水溶性的2D铒-镝纳米片(2D NSs)(图1)。这种纳米片作为免疫调节剂可以靶向淋巴结,激活巨噬细胞,显著增强HIV疫苗在小鼠体内的体液免疫应答和细胞免疫应答反应(图2)。转录组学结果分析进一步揭示了6个关键分子(Msr1, Ccr2, Serpinb9, Klrk1, Klrd1, Klrc1)与体内2D NSs介导的免疫调节密切相关(图3)。这些结果为这种新的免疫调节剂的机制提供了新的见解也更好地指导我们优化设计其他具有免疫调节作用的2D材料。本研究工作是目前第一次实现了免疫调节2D NSs的设计及概念验证,2D NSs在改善疫苗及免疫治疗方面也显示出巨大的潜力。本文将2D NSs免疫调节剂概念实现,极大地拓宽了传染病疫苗接种、肿瘤免疫治疗等以免疫为基础的预防和治疗的选择范围。 图1 2D NS合成及表征 图2 2D NSs在调节HIV DNA疫苗免疫应答中的作用 图3 单独使用HIV疫苗或HIV疫苗+2D NSs处理小鼠的转录组分析          该工作得到了国家自然科学基金,国家重点研发计划,中国科学院,腾讯基金XPLORER奖,云南省卫生健康委医学领军人才计划,云南省中青年学术技术带头人计划,云南省基础研究计划等项目的支持。

2021-12-21 | 教学新闻

生医工系第二届学术交流日活动顺利召开

       2021年12月18日,为加强师生交流,展示学生风采,促进合作创新,由南方科技大学生物医学工程系党总支主办的献礼建党100周年“书记项目”——第二届BME Research Day(学术交流日)活动,在工学院南楼813报告厅顺利召开。工学院党委副书记彭中华、生医工系系主任蒋兴宇及多位系内教师出席活动,与同学们交流探讨科研成果。   蒋兴宇主任致辞        活动伊始,蒋兴宇讲席教授致开场词并介绍了活动举办的初衷及交流议程,鼓励同学们在此次活动中,积极分享自己的所学所想。 彭中华副书记致辞        彭中华副书记作交流会致辞,称此次活动的举办是进一步强化基层党建工作责任意识、推进“一支部一特色”基层党建品牌建设的重要举措,希望大家珍惜这次学习机会,积极参与分享和讨论,做到学以致用。 口头汇报环节 壁报展示环节        随后,口头汇报环节正式开始,来自生医工系各个课题组的17位研究生以及6位本科生们讲述了自己的科研成果,并积极回答在场师生的提问。选手们的学术报告思维清晰、条理明了,充分展示了我系学生的高水平科研能力以及超强的学术报告水平。壁报展示环节穿插其中,18位参展学生在介绍海报作品的同时,并就科研成果与在场师生展开讨论。 获奖学生合影        经激烈角逐,并由我系全体教授共同评议,最终决出本科生组最佳口头汇报1名:王一珂、最佳壁报展示1名:吴雨桐,研究生组最佳口头汇报2名:刘洁、李迓曦、最佳壁报展示2名:王美娟、查梦蕾。 合影        BME Research Day每年定期举办,是我系学生培养的重要环节,也是提升我系学术氛围的重要组成部分,是我系特色传统活动之一。今后,我系将继续致力于搭建常态化学术交流平台,助力形成良好学术氛围,进一步实现学科特色发展和人才高质量培养目标。     供稿:生物医学工程系 采写:肖然

2021-12-02 | 综合新闻

东北大学校长冯夏庭院士来校调研交流,并就生物医学工程领域签署战略合作协议

       2021年11月30日下午,东北大学校长冯夏庭院士一行来校调研交流。南方科技大学校长薛其坤院士、副校长兼教务长张东晓院士、党委常委、秘书长、党政办公室主任陈思奇老师,工学院院长徐政和院士、研究生院院长、党委研究生工作部部长汪宏讲席教授,党政办公室副主任刘立、国内合作与重大项目办公室高山等出席活动,生物医学工程系部分教研序列教师代表参加会议,南方科技大学副校长兼教务长张东晓主持会议。 会议现场        薛其坤校长首先代表学校对各位专家的到来表示热烈欢迎和衷心感谢,并介绍了学校和工学院生物医学工程系整体情况,希望以生物医学工程领域为发展合作契机,两校可以在科学研究、人才培养等方面加强合作,面向世界科技前沿和国家重大战略需求,共同打造青年人才培养高地,为实现我国高水平科技自立自强做出新的更大贡献。 薛其坤校长致辞        冯夏庭校长高度赞赏南科大十年发展成果,并介绍了东北大学的基本情况。他表示东北大学和南科大是互补型的学校,希望在办学条件、师资力量、教学建设、人才培养及科研创新等各方面优势互补,在生命科学前沿和医工交叉融合领域努力形成新增长点,积极推动生物医学工程学科的转型升级、内涵提升和可持续发展。 东北大学冯夏庭校长致辞        随后,南科大生物医学工程系系主任蒋兴宇针对全系具体情况进行专题汇报,生医工系将继续完善新工科教育体系、推进一流专业和一流课程建设,并进一步结合地域特色和行业背景,在科研上注重凝练突出自身特色优势,与国家发展同向同行,做高质量、高水平的研究。在学科建设、科学研究、人才培养等方面与东北大学医学与生物信息工程学院展开深入合作。 生物医学工程系系主任蒋兴宇作介绍        东北大学医学与生物信息工程学院赵越从学校发展历史、师资队伍与资源、科研创新、人才培养质量等多角度对学科现状和发展规划进行了全面探析。并表示东北大学医学与生物信息工程学院与南科大工学院生物医学工程系在生物传感分析技术领域始终保持良好的合作关系,双方正在合作开发的体外神经系统等项目,将有望应用于一体化可穿戴设备、人机交互、健康监测等领域,最终为人类的生命健康造福。 医学与生物信息工程学院执行院长赵越作介绍        最后,东北大学校长冯夏庭与南科大薛其坤校长签署了两校生物医学工程领域战略合作协议,两校将在此基础上展开深度合作,共同发展奠定更加坚实的基础,实现双赢。 签署合作协议        冯夏庭一行还参观了我校办学成果展厅、冷冻电镜中心、生物医学工程系实验室等,详细了解学校办学情况。 参观蒋兴宇讲席教授实验室        东北大学研究生院常务副院长王兴伟、科学技术研究院院长王强、沈阳新华通大科技有限公司董事长贾辉、对外联络与合作处处长李鹤、东北大学佛山研究生院院长徐新阳、医学与生物信息工程学院执行院长赵越、医学与生物信息工程学院党委副书记王帅、医学与生物信息工程学院副院长马贺、医学与生物信息工程学院院长助理王之琼、医学与生物信息工程学院信息系主任崔笑宇及相关部门负责人参加活动。 合影       采写:史彦祺 摄影:张晓燕

2021-11-26 | 综合新闻

祝贺我系金大勇讲席教授当选澳大利亚工程院院士

       2021年11月26日,南方科技大学生物医学工程系金大勇讲席教授当选澳大利亚工程院院士,这是继今年7月荣获澳大利亚桂冠教授后的又一殊荣。        作为多学科交叉的顶尖科学家代表,金大勇讲席教授还曾先后于2015年荣获澳大利亚科研最高奖尤里卡奖交叉学科创新奖,2016年当选澳大利亚百名科技创新领军人物,2017年荣获澳大利亚科学院工程科学奖以及同年荣获澳大利亚总理奖—年度物理学家奖。 金大勇讲席教授        金大勇讲席教授1979年出生于中国辽宁,今年42岁。他2002年本科毕业于辽宁师范大学物理系,2003年从中科院上海光机所出国求学深造,师从时任澳大利亚麦考瑞大学科研副校长Jim Piper教授, 于2007年获得博士学位。2012年到2015年在他的母校麦考瑞大学从讲师先后晋升到高级讲师、副教授和教授,2015年任悉尼科技大学生物医学材料及仪器研究所所长、澳大利亚国家可集成生物医疗仪器与技术转化基地所长,2017年任悉尼科技大学杰出教授,2019年任南方科技大学生物医学工程系讲席教授。        金大勇讲席教授研究专业领域涵盖了生物光子学、生物医疗诊断、精密光学仪器、生物光子传感器、纳米技术、稀土荧光探针、类器官生物芯片、微纳机器人及相关生物医学仪器自动化等。共发表了二百余篇高水平学术文章,包括三十余篇原创性工作发表在《Nature》及子刊中;同时还有十余项国际发明专利。        多年来,金大勇讲席教授在交叉学科的路上勇于探索,带领团队取得了一系列全球领先科研成果,包括创新开拓的国际领先的单分子数字生物成像技术,即利用稀土探针、量子点、微纳激光、纳米晶体“超点”等技术研发的时间分辨和超分辨显微成像系统,多项技术参数领先。这一系列技术的开发和科学方法学的探索不仅适用于早期流行病检测、传染病快检、高通量药物筛选、细胞方法学、蛋白组学与免疫组学最终达到精准医疗,而且对农业育种、食品检测、环境科学等领域都起到重要的技术推动作用。        在新材料学科,他解决了多功能纳米探针材料的可控、可重复和高效率合成的技术难题,为新型材料制备提供了新的发展空间和思路;在开发纳米探测器和纳米尺度表征仪器的基础上,他发现了克服“浓度猝灭”的新方法,从而在单颗粒纳米级别上实现了高浓度稀土掺杂将红外光转换为高亮度的可见光,并实现了时间编码、纳米测力和温度传感,以及超灵敏超分辨成像等技术;在这次新冠疫情的防御上,他的团队成功研发并成功向西澳珀斯的Alcolizer转化了一项可用于唾液检测并在十分钟内出结果的全新试剂、仪器和方法。        金大勇讲席教授站在全球科技前沿,不断攻克一个又一个关键技术,接下来将在量子生物学领域进行开创性研究,将活细胞成像拓展至亚细胞器互作和单分子水平,从而获得生物组织和细胞蛋白组学信息和磷脂分子分布图像,打造三维“生物细胞街景图”,完成过程可视化;从实现定性分析转向单分子数字定量分析,从结构成像转向功能成像,获得细胞器互作的真实景象,以解码生命的复杂性与疾病产生的原因。可广泛应用于疾病早期诊断、生物靶向医疗、靶向新药研发、防伪数据存储和纳米光学等领域。他和他的团队将引领世界量子生物领域的创新发展。        南科大生医工系高度重视人才队伍建设,初步建成了一支国际化高水平的教师队伍。截至目前,系核心教师共计40名,其中3名讲席教授,2名教授。多名教师获得“国家杰出青年基金”、“国家自然科学优秀青年基金”等项目和奖励。教学科研系列教师100%具有海外工作经验,100%具有在世界排名前100名大学工作或学习的经历,半数教师获国家级人才称号。        再次祝贺我系金大勇讲席教授!

2021-11-17 | 科研新闻

南科大微流控-生物材料实验室科研进展荣获Cell Press 2020中国年度论文

       近日,南方科技大学微流控-生物材料实验室于Cell Press旗下期刊Matter上发表的论文“Electronic Blood Vessel”获评物质科学领域“细胞出版社2020中国年度论文”。该研究通过使用聚(L-丙交酯-co-ε-己内酯)(PLC)来封装液态金属以制造柔性和可生物降解的电路,从而开发了一种电子血管。        这种电子血管可以将柔性电子与三层血管细胞集成在一起,以模仿和超越自然血管。该电子血管通过电刺激可以有效促进内皮伤口愈合模型中的细胞增殖和迁移,并可以通过电穿孔将基因可控地递送到血管的特定部位。通过兔颈动脉置换模型的3个月体内研究,作者评估了电子血管在血管系统中的功效和生物安全性,并通过超声成像和动脉造影证实了其通畅性。该研究为将柔性、可降解生物电子学整合到血管系统中铺平了道路,该系统可以用作进一步治疗的平台,例如基因疗法、电刺激和电子控制的药物释放。将来,该电子血管可以与其他电子组件和设备集成在一起,以实现诊断和治疗功能,并通过在血管组织-机器界面中建立连接,从而极大地增强其医学功能。        据悉,Cell Press 细胞出版社是国际知名的全学科学术出版机构。自2015年起,细胞出版社每年都会梳理发表在旗下期刊上的中国论文,对于中国科学家在生命科学、物质科学、交叉科学等全科学领域的科研成果进行系统的介绍。2020年,发表在Cell Press旗下期刊上的中国论文共758篇。经Cell Press编辑提名、第三方专家委员会的独立评审,并综合论文下载量、引用量和领域内突破性等权衡标准,在入选论文中评选出生命科学领域、物质科学领域及交叉科学领域“细胞出版社2020中国年度论文”共30篇(每个领域10篇)。          论文链接:        https://www.sciencedirect.com/science/article/pii/S2590238520304938

2021-11-04 | 综合新闻

消防安全,预防先行——生物医学工程系举办消防应急预演

       为进一步增强我系师生的消防安全意识,提高自救防范能力,做到在发生火警火灾时,能临危不乱,有序、迅速地按照消防逃生路线安全疏散,2021年11月4日,生物医学工程系在工学院南楼开展了消防应急预演。工学院党委副书记彭中华、生物医学工程系系主任蒋兴宇以及生物医学工程系全体安全员出席活动。 活动现场        活动开始,工学院安全员谭志伟老师介绍了本次消防演练的必要性,号召大家对安全问题引起重视。来自安全、健康与环境办公室的程庆伟老师针对疏散路线、安全员的职责及注意事项作了明确清晰的部署安排。随后,彭中华副书记作讲话,他强调“安全第一,安全无小事”,并预祝此次预演圆满成功。 彭中华副书记作讲话        会上,系主任蒋兴宇老师对工学院举办此次活动表示感谢,要求各课题组前来参会的安全员务必重视各类安全培训,会议期间做好记录,将会议细节传达给各实验室成员。此外,蒋老师还结合自己在美国亲历实验室火灾的事例和大家再次强调了消防演练的重要性。他表示,自己将不定时到各个实验室巡查,如发现任何安全隐患,会及时指出,要求整改,希望大家引起重视。 蒋兴宇讲席教授作讲话        随后,安全员们针对具体的演练流程与在场老师进行交流。在模拟警铃响起后,大家选择了就近的安全楼梯预演了消防疏散。 疏散演练 疏散演练        会后,为了继续加强安全员的防御灾害事故的能力,学校安保老师为在场人员介绍了消防栓及灭火器的使用知识,强调了使用过程中的注意点,并正确示范了使用操作。 消防栓及灭火器使用介绍     生物医学工程系安全管理委员会

2021-10-28 | 科研新闻

科普系列 | 多药耐药细菌介绍及其感染的纳米医学防治

       1928年,人类历史上第一种真正意义上的抗生素——青霉素由英国细菌学家Alexander Fleming发现,自此改变了人类与病原菌间的斗争。随后几大类天然抗生素的发现,开启了人们抵御常见病原菌感染的新时代。然而,自从20世纪40年代第一支青霉素投入临床,对其耐药的细菌就层出不穷。抗生素的广泛使用,对各种细菌产生了极高的选择压力。        通过质粒上抗生素抗性基因在种内和种间的横向传播,细菌可以自然地获得和积累耐药基因。 尤其是医院和畜牧业广泛使用抗生素,大大加速了细菌耐药性的发展,给世界经济造成了巨大的负担。为了克服细菌耐药性问题,人们增加了天然抗生素筛选的规模和深度。然而,随着新型天然抗生素的发现越来越难,人们只能被迫转向其他方法,例如对现有的抗生素结构进行修饰或半合成;微生物发酵筛选;使用新出现的基因组学方法以及高通量筛选来获得目标产品。尽管这些努力对人类与耐药菌的对抗做出了很大贡献,但巨大的人力和资金投入与产出并不成正比。由于投入产出比极不平衡,不少药企在新抗生素的研发上已经停止投入过多精力,这也导致了抗生素产品线的逐渐枯竭。与此同时,耐药菌株增多的趋势依然势不可挡。        通常,如果一种细菌携带多种抗生素的耐药基因,我们就称其为多药耐药菌(Multidrug-resistant bacteria),或“超级细菌(Superbug)”。自1960年代以来,人们陆续发现了多种“超级细菌”。除了被称为”ESKAPE”的六大常见多药耐药菌之外(E: 粪肠球菌,S: 金黄色葡萄球菌,K:肺炎克雷伯菌,A:鲍曼不动杆菌P:铜绿假单胞菌E:肠杆菌属),诸如多药耐药的念珠菌属(Candida),艰难梭菌(Clostridioides difficile),淋球菌(Neisseria gonorrhoeae),肺炎链球菌(Streptococcus pneumoniae),沙门氏菌属(Salmonella),结核杆菌(Mycobacterium tuberculosis)等,也在逐渐造成越来越严重的威胁。据美国疾病控制和预防中心2019年估计,仅在美国,每年就有超过 280 万例耐药细菌感染,导致 35,000 多人死亡。在美国,社区相关的耐甲氧西林金黄色葡萄球菌(Methicillin-resistant Staphylococcus aureus,MRSA)感染每年会给社会带来1.4-13.8亿美元的负担,而且这一数额还在不断增加。        与此同时,随着人们对于耐药菌认识的不断加深,一些条件致病的多药耐药菌所受的关注也在增加,例如耐甲氧西林表皮葡萄球菌(Methicillin-resistant Staphylococcus epidermidis,MRSE)。由于其广泛分布于人体皮肤表面,曾一度被认为是一种普通的共生菌。相较于分泌细菌外毒素较强的MRSA来说,其毒力较弱,难以引起正常人的系统性感染。然而,正是由于MRSE 的广泛分布,使得其增加了对人体的感染机会。另外形成生物膜(由细菌分泌的生物大分子及活细菌构成的厚毯状细菌群体,内含蛋白质、多糖、DNA等)的能力也使得MRSE能够定植于导管表面,从而造成反复且难以处理的院内感染,尤其是在免疫功能低下的患者中。在 2015-2017 年的一项调查中,MRSE被归类为成人血流感染以及成人手术部位感染病原体中的头号细菌。        此外,由于MRSE可以频繁地交换和积累耐药基因而不会引起身体症状,它也作为潜在的耐药基因库来促进种内和种间的耐药转化,从而促使更多多药耐药菌株的产生。在过去的20 年中,新抗生素的开发停滞不前,而多药耐药细菌层出不穷。人们迫切需要寻求新的方法来扩大针对 MRSE、MRSA 和其他多药耐药细菌的一线药物,寻找包括抗多药耐药菌株在内的广谱药物和难以诱导耐药性的药物变得迫在眉睫。        在传统抗生素工业的高通量筛选以及化学合成与修饰以外,纳米抗菌材料,尤其是抗多药耐药菌的纳米材料逐渐走入人们的视线。相较于传统抗生素,纳米抗菌材料的合成摒弃了大量繁琐的合成与提纯过程,仅需要对其进行简单的修饰。其生物相容性也相对较好。另外相较于抗生素依赖特定靶点的问题,纳米抗菌材料能够多通路抗菌,使细菌不易对其产生耐药性。以上这些都为治疗耐药细菌引起的感染性疾病提供了全新策略。抗耐药菌纳米材料一般可以简单分为有机、无机和复合材料三大类别。有机抗耐药菌纳米材料的来源可以是天然动植物及其代谢产物,通过对其结构的化学修饰赋予其较好的抗耐药菌效果;也可以来源于人工合成的高分子聚合物。        从虾、蟹等水生节肢动物的外骨骼中提取并处理得到的壳聚糖(Chitosan),作为天然获取的正电有机高分子材料,具有非常好的人体相容性和代谢性。它能够与细菌表面负电荷吸引而破坏其膜结构,从而达到杀菌的目的。通过进一步在其侧链引入一系列的抗菌基团(季铵基,胍基),修饰后的壳聚糖能够拥有更强的抗耐药菌效果。类似的修饰也被应用在棉纤维和纸浆纤维上。同样是天然多糖,纳米原纤化纤维素作为一类取材于天然植物纤维的纳米材料,其比表面积大、生物相容性非常好。通过温和的氧化处理,醛基化的纳米原纤化纤维素作为伤口敷料,展现出对MRSA极好的杀伤效果。        人工合成的抗耐药菌纳米聚合物多种多样,以超支化聚乙烯亚胺为例,这种带正电的合成纳米高分子能够以细菌的细胞壁为目标,阻断耐药酶的作用,进而破坏MRSE耐药性。与抗生素协同使用,超支化聚乙烯亚胺能够敏化MRSE,进而增强已耐药抗生素的杀伤效果。除了化学聚合而成的高分子抗耐药菌纳米材料,超分子自组装纳米材料,即通过一系列分子间作用力控制分子的聚集行为,使其在溶剂中组合成为纳米网络,在此过程中凝聚并抑制多药耐药细菌的增长,也是一种有效控制和杀灭耐药菌的手段。        无机抗耐药菌纳米材料主要包括碳基、硅基和金属基抗耐药菌材料。其中各类金属钠米颗粒及金属化合物颗粒组成了对抗多药耐药菌感染的有效力量。银作为一种具有抗菌效果的金属,以其为原料制成的器皿和餐具自古以来就一直被人们使用。制成银纳米颗粒后,由于比表面积增大,银具有了更强大的抗菌效果,协同使用后,银纳米颗粒更是能够成百上千倍的增强抗生素对多药耐药细菌的杀伤力。但是银离子对于人体的毒性一直是一个不可回避的问题。通过简便的方法将纳米尺度的银纳米颗粒同介孔硅材料进行结合,能够在维持其抗菌浓度的前提下有效降低其对于人体细胞的毒性。另外将其与金或其他金属制成合金纳米颗粒,也能够有效地提高其人体相容性。        金纳米颗粒在1857年被发现,相较于银来说,金具有较高的化学惰性以及生物相容性,因此其抗菌应用也更加广泛。我们发现将抗生素的合成中间体与金纳米颗粒进行结合,能够增强其对耐对应抗生素的大肠杆菌的杀伤作用。金纳米颗粒的神奇不仅仅局限于此,将抗菌活性较弱的氨基嘧啶衍生物修饰在金纳米颗粒表面后,其展现出对于多药耐药革兰氏阴性菌(大肠杆菌和铜绿假单胞菌)的高效杀灭效果。这种修饰了氨基嘧啶衍生物的金纳米颗粒通过改变细菌表面正常生理电位,抑制ATP合酶活性,降低ATP水平,使得细菌的代谢水平整体下降。另一方面抑制核糖体亚基与tRNA结合,破坏其翻译过程。这种多靶点作用使得金纳米颗粒在有效对抗多药耐药细菌的同时不容易引起耐药性的过度积累。通过和其他非抗菌小分子共修饰,这种双配体的金纳米颗粒更是对多种耐药革兰氏阴性和革兰氏阳性菌都展现出抗菌效果。除了氨基嘧啶类小分子,氨基糖苷类小分子也能够在偶联金纳米颗粒后展现出对于耐药菌的杀灭效果。将其制成涂层或者通过纺丝的方式织成伤口敷料后,都能够有效防止多药耐药细菌的黏附和后续生物膜的形成。        除了对于其表面配体类型进行改变,对于金纳米颗粒的表面配体密度进行调节能够使得金纳米颗粒的抗菌谱在阳性耐药菌和阴性耐药菌之间转换,可以用于治疗复杂的复合型耐药菌感染。另外对于金纳米颗粒的核心进行其他贵金属的掺杂也能增强其抗菌活性。通过调控掺杂比例,金-铂、金-铑、金-钌合金构成的合金纳米颗粒均对于多重耐药的革兰氏阴性菌展现出较高的抗菌活性。金纳米颗粒的粒径在几到数百纳米不等,因此对于其尺寸的调控也展现出与其抗耐药菌活性极高的相关性。通过减小金纳米颗粒的尺寸到小于2纳米的范围,金纳米颗粒的抗菌谱和抗菌活性相较于尺寸稍大的金纳米颗粒都有了明显的提高。        通常我们将直径小于2纳米的金纳米颗粒称为金纳米簇。在对抗多药耐药细菌的方面,金纳米簇因其高稳定性、制备简单和稳定的荧光而被广泛研究。通过在其表面修饰长链季铵配体,这些带有橙红色荧光的金纳米簇能够有效破坏MRSA的细胞膜结构,进而治疗MRSA引起的伤口感染。将其修饰在牙套表面后,其出色的抗菌能力能够有效治疗耐药链球菌引起的口腔炎症。特别地,由于其独特的光热效应,修饰了DNA酶的金纳米簇能够有效的破坏生物膜,进而产生广谱的抗耐药菌效果。        双配体修饰的金纳米簇能够有机结合两种配体的优势。通过优化配体比例,金纳米簇可以通过多种抗菌作用有效杀死多药耐药的革兰氏阳性菌,包括诱导细菌聚集、破坏细菌膜完整性和电位以及产生活性氧。此外,将优化后金纳米簇与一线抗生素相结合可以显着逆转耐药,从而大大提高一线抗生素的疗效,增强体外和皮肤感染动物模型对多药耐药菌的抗菌活性。此外,这些金纳米簇的近红外荧光可被用于监测其生物分布和体内清除效率。        以二硫化钼为代表的二维纳米金属化合物抗菌材料,能够响应光线的照射进而释放出活性氧。这些活性氧基团作为高效的氧化剂,能够与重要的生物大分子,例如膜蛋白以及DNA结合并损坏其结构。因此,这些二硫化钼纳米片能够广谱性地杀灭多重耐药的大肠杆菌和MRSA。        将有机和无机的抗耐药菌纳米材料进行结合后,其性能能够得到很大的提升。例如将纳米晶体纤维素作为底物,在其表面合成银纳米颗粒,不仅可以用于葡萄糖的比色检测,其对于多种耐药的革兰氏阳性和阴性菌也表现出极高的抗菌作用。将氨基嘧啶衍生物负载的金纳米颗粒同细菌纤维素相结合,得到的抗菌辅料不仅能保持金纳米颗粒优良的抗耐药菌效果,其物理化学性质,包括吸水能力、机械应变和生物相容性都得到了极大的提升。随着抗生素危机的逐渐来临,这些新兴的抗耐药菌纳米材料为我们对抗日益增长的多药耐药细菌种类以及越来越普遍的耐药细菌感染构筑了新的防线。我们设想这些抗多药耐药菌纳米材料能够在不远的未来脱离实验室进入到医院、学校、工厂等生活的方方面面,为人类的健康助力。   拓展阅读:https://pubs.rsc.org/en/content/articlehtml/2021/sc/D1SC03056F     本文作者:庞泽阳 微流控-纳米生物实验室

2021-10-10 | 教学新闻

南方科技大学生物医学工程系2021年战略咨询会顺利召开

​       2021年10月9日,南方大学生物医学工程系2021年战略咨询会在办公楼201召开,海南大学校长骆清铭院士(线上)、深圳大学副校长张学记院士、南方科技大学代理副校长顾东风院士、南方科技大学代理副校长杨学明院士、上海交通大学杨广中院士(线上),南方科技大学工学院院长徐政和院士,南方科技大学党委研究生工作部部长、研究生院院长、材料科学与工程系汪宏讲席教授,南方科技大学工学院党委书记、工学院副院长、电子与电气工程系贡毅教授,南方科技大学科研部常务副部长王亚武等出席会议,院系全体教研序列教师参加会议,南方科技大学工学院院长徐政和院士主持会议。 合影        顾东风代理副校长代表学校首先对各位专家的到来表示热烈欢迎和衷心感谢,并介绍了学校和工学院生物医学工程系整体情况,对生物医学工程系的发展充满信心。他表示,拥有着天时、地利、人和优势的南科大生医工系,应充分把握机遇,将“双区”资源、师资优势、科研实力注入创新人才培养机制,形成南科大拔尖创新人才培养模式,从而更好地服务国家战略需求,引领大健康产业发展,打造创新育人先行示范。 代理副校长顾东风院士发言 代理副校长杨学明院士发言   工学院院长徐政和院士主持会议 南方科技大学党委研究生工作部部长、研究生院院长、材料科学与工程系汪宏讲席教授出席会议        随后,系主任蒋兴宇针对生物医学工程系具体情况进行专题汇报,报告从生物医学工程学科发展历史、师资队伍与资源、科研创新、人才培养质量、社会服务与学科声誉等多角度对学科现状和发展规划进行了全面探析。蒋兴宇强调,生医工系将继续完善新工科教育体系、优化培养方案、推进一流专业和一流课程建设、推进校企协同育人。在科研工作方面,要推进“顶天立地”的科研工作建设,不仅要不断推进科研成果,也要将科研技术落地,促进和企业的合作。 蒋兴宇讲席教授作汇报        专家们围绕会议议题,结合各自院校的学科发展经验,针对学科方向、学科师资、科学研究、人才引进和未来规划等问题进行了交流分享与献言献策。专家们充分肯定了生物医学工程系近年来取得的成绩,同时也指出了发展中所存在的问题。 海南大学校长骆清铭院士发言(线上) 颁发聘书 深圳大学副校长张学记院士发言        专家们建议,我系发展要进一步结合地域特色和行业背景,在科研上注重凝练突出自身特色优势,与国家重大战略需求同向同行,并强调要形成合力,发展有特色的科研工作;在人才培养方面,专家们强调系里年轻PI们要沉下心来,苦练内功,要做爱岗敬业、具有奉献精神的优秀教师;在学科方向上,要抢抓机遇,形成独树一帜的特色专业,多交流、多交叉、多融合、多创新。        与会教师就团队建设、人才培养、学科交叉等方面和专家们进行了互动交流。专家们强调,生医工系应组织骨干力量,承接更多的国家项目,把海外英才聚集起来,为国家科技创新和未来产业的发展做出贡献。 会议现场        最后,系主任蒋兴宇在总结讲话中强调,各位专家的意见和建议为我系下一阶段的战略规划和生物医学工程学科发展提供了新思路﹑新想法,全体教职工要统一思想,认真学习、落实到位,全面推进我系发展建设再上新台阶。     采写:张艺真

联系我们

广东省深圳市南山区
学苑大道1088号

bme@sustech.edu.cn

关注微信公众号