ENG

勇于冒险 甘于艰苦 乐于和谐

Adventurous Arduous Amiable

2020-12-05 | 综合新闻

广东省本科高校生物医学工程专业教学指导委员会2020年年度会议顺利召开

       12月4日至5日,广东省本科高校生物医学工程专业教学指导委员会2020年年度会议在南方科技大学、深圳大学顺利召开,承办单位为南方科技大学生物医学工程系和深圳大学医学部生物医学工程学院。会议由广东省本科高校生物医学工程专业教学指导委员会主任、南方医科大学生物医学工程学院院长冯前进教授主持,广东省本科高校生物医学工程专业教学指导委员以及委员单位教师代表约120多人参加会议。        合影        会上,南方科技大学副校长、教务长张东晓院士致欢迎辞,张校长表示,高等学校教学指导委员会是人才培养的最权威、最高级别专家组织。半个多世纪以来,教指委在我国高等教育改革发展进程中扮演着重要角色,发挥了非常关键的研究、咨询、指导和推动改革等方面作用。广东省教指委的2020年度工作会议由南科大和深大联合承办,这对我们而言有着非常特殊的意义,从教育部正式批准建立南科大,并赋予学校探索具有中国特色的现代大学制度、探索创新人才培养模式的重大使命,今年的12月20日,学校也将迎来十周岁的生日,各位专家学者在此总结工作、交流经验、分析形势,对我们是一个极大的肯定和激励。 教指委主任冯前进教授主持会议 张东晓院士致欢迎词 蒋兴宇讲席教授发言        随后,大会围绕生物医学工程专业和学科建设展开汇报和讨论。南方医科大学、深圳大学等部分高校代表分别对所在学校生物医学工程专业的教学科研建设和规划作了报告,介绍所在高校生物医学工程专业的办学特色和学科建设经验。我系系主任蒋兴宇教授介绍了我系本科专业发展的基本情况,我系教师代表张明明助理教授代表我校进行了青年教师示范课展示。        会上,冯前进主任委员总结2020年教指委工作和布置2021年度工作计划。会后,全体与会人员参观了南方科技大学生物医学工程系和深圳大学医学部生物医学工程学院实验室。   撰稿:张艺真

2020-11-19 | 科研新闻

我系讲席教授吴德成科研项目入选国家重点研发计划

      日前,科技部公示了国家重点研发计划“合成生物学”专项2020年度立项项目清单,我校生物医学工程系讲席教授吴德成牵头的项目“微纳生物机器人的定向合成和诊疗应用”入选。这是我校第二个作为首席科学家单位牵头组织的国家重点研发计划项目。       该项目由我校牵头,复旦大学附属肿瘤医院、华东理工大学、中国科学院上海高等研究院、清华大学、清华大学深圳国际研究生院联合申报。该项目旨在利用合成生物学手段,开发活细胞感知、整合、响应多种肿瘤微环境信号功能的微纳机器人,评估其作用于肿瘤类器官以及肿瘤动物模型的诊疗效果,建立微纳生物机器人对肿瘤的智能诊断和适应性精准治疗的新策略。该项目的实施,将拓展合成生物学技术在重大疾病诊疗中的应用,并拓宽现有的癌症诊治手段,降低癌症死亡率。       国家重点研发计划由原来的国家“973”计划、“863”计划、国家科技支撑计划、国际科技合作与交流专项等整合而成。该计划聚焦事关国计民生的重大社会公益性研究,以及事关产业核心竞争力、整体自主创新能力和国家安全的重大科学技术问题,致力于突破国民经济和社会发展主要领域的技术瓶颈。 吴德成讲席教授 吴德成课题组       吴德成2019年加入南方科技大学任生物医学工程系讲席教授。他曾获国家杰出青年科学基金和基金委重点项目等资助。吴德成团队长期致力于生物医用材料的基础与应用研究,取得了突出的研究成果,获教育部技术发明一等奖。

2020-11-19 | 科研新闻

南科大金大勇团队打造光学多维度超分辨 “街景地图” 呈现细胞器互作动态真面目

      近日,南方科技大学生物医学工程系讲席教授金大勇研究团队和北京大学教授席鹏研究团队成功开发了光谱偏振光学断层成像技术(SPOT),结合亲脂探针,从光强、光谱和偏振三个光学维度分别解析脂膜的形态、极性和相位,首次实现了细胞内10种亚细胞器膜的同时成像并对其脂质动力学进行了分析。研究成果发表在《自然-通讯》(Nature Communications)。       正如我们的城市一样,细胞是一个功能完备的“微观世界”,一个细胞内有多种不同的细胞器负责物质输运、新陈代谢、基因遗传、内分泌调节等功能。细胞器相互作用的研究是我们能认识细胞功能,并且了解致病根源的重要途径;然而当前的荧光显微镜受限于有限的荧光颜色通道,染色种类,染料的稳定性,时间和空间的成像分辨率等因素,为进一步探寻亚细胞器脂膜异质性等带来阻碍。       脂膜广泛存在于亚细胞器中,其形态、组成和脂质相协同调节生物物理膜特性、膜蛋白功能以及脂和蛋白间的相互作用。虽然脂膜在亚细胞器生化功能和互作中扮演着重要角色,但由于其化学成分类似,不同类型的脂膜的分类、相互作用研究和长时间动态观察均十分困难。       相比于现有的其他荧光成像技术,这次自主研发的SPOT技术利用六张原始图像即可获得荧光强度、光谱和偏振多个维度信息,成像速度快,可实时观测亚细胞器的动态变化。该技术良好的光学层切能力同时提高了偏振探测精度和光谱探测精度,首次利用光学成像技术得到亚细胞器内部的脂质异质性动态,对脂质极性和位相进行量化观察。 图 1 SPOT实现亚细胞器脂膜异质性分析 利用SPOT技术,研究人员发现了线粒体内脊和外膜的脂质异质性以及内吞体在成熟过程中脂质成分的改变。通过实时监测,研究人员捕捉到了细胞分裂过程中细胞膜异质性的动态改变,以及TNT形成过程,和线粒体脊消失过程中脂质成分的动态改变。 图 2 SPOT监测到细胞分裂过程中脂膜的动态改变 图 3 线粒体嵴消失过程中脂膜的动态变化       传统荧光显微镜受限于标记方法,最多只可进行四种细胞器的同时成像。SPOT突破了传统光学成像维度限制,从三维空间、时间、偏振和光谱六个维度实现高时空分辨率的活细胞成像。通过膜形态、脂质极性和脂质相的协同作用可以对十种亚细胞器同时成像和分类,将为脂质组学和细胞器互作研究再添利器。       南方科技大学研究助理教授张昊为本文共同第一作者和共同通讯作者,一直以来致力于偏振超分辨成像技术的开发与应用,此前完成的工作包括:(1)开发偏振偶极子超分辨成像SDOM技术(Light: Sci. Appl. 2016),得到Nat. Methods的亮点评价;(2)开发偏振结构光超分辨成像pSIM技术(Nat. Commun. 2019),得到Nat. Methods的亮点评价;(3)提升偏振样本的SIM成像分辨率(Opt. Express. 2020),并开发基于激光干涉和数字微镜阵列的低成本SIM技术(Appl. Phys. Lett. 2020)。       本文共同第一作者还有清华大学博士生刘文辉和北京大学博士生李美琪。本研究得到国家自然科学基金、科技部重点研发计划、北京市自然科学基金、深圳市科创委项目等的资助。

2020-10-27 | 科研新闻

南科大学者在人造电子血管方面取得突破性成果

       近日,南方科技大学生物医学工程系相关领域教授和中国医学科学院阜外医院的相关领域研究者合作通过使用聚(L-丙交酯-co-ε-己内酯)(PLC)来封装液态金属以制造柔性和可生物降解的电路,从而开发了一种电子血管。该研究以题为“Electronic Blood Vessel”的论文发表在Matter上。        这种电子血管可以将柔性电子与三层血管细胞集成在一起,以模仿和超越自然血管。该电子血管通过电刺激可以有效促进伤口愈合模型中的细胞增殖和迁移,并可以通过电穿孔将基因可控地递送到血管的特定部位。通过兔颈动脉置换模型的3个月体内研究,作者评估了电子血管在血管系统中的功效和生物安全性,并通过超声成像和动脉造影证实了其通畅性。该研究为将柔性、可降解生物电子学整合到血管系统中铺平了道路,该系统可以用作进一步治疗的平台,例如基因疗法、电刺激和电子控制的药物释放。        目前,心血管疾病是全球范围内导致死亡的首要原因。通过冠状动脉搭桥术进行的心血管疾病治疗,现有的小直径(<6 mm)组织工程血管(TEBV)尚未满足临床需求。大多数研究中所用的方法仅将TEBV用作提供机械支持的支架,其主要依赖于宿主组织的重塑过程,而在帮助新血管再生方面存在明显的局限性。迄今为止,现有研究均未取得令人满意的临床结果。具体而言,血流和TEBV之间复杂的相互作用通常会引起炎症反应,从而导致血栓形成、新内膜增生等问题。为此,新一代TEBV应该不仅能充当支架以提供机械支持,而且还能具备主动响应并与重塑过程相结合的能力,以便在植入后提供适应性治疗。        团队以聚四氟乙烯为轴,卷上基于PLC的金属-聚合物导体(MPC)膜来制造电子血管。电子血管的内径约为2毫米,具有柔性和可降解性。MPC电路具有优异的导电性,能很好地分布在三维多层管状结构中。研究发现,电子血管还具有优异的细胞安全性,培养的三种血管细胞(人脐静脉内皮细胞、人主动脉平滑肌细胞、人主动脉成纤维细胞)均具有很好的活性。此外,团队还构建了3D的电功能模型,通过电化学工作站在体外进行电刺激内皮细胞,促进其增殖迁移。同时,将三种血管细胞图案化在电子血管上,构建3D模型,通过电转仪进行体外电转GFP质粒,培养两天后观测到质粒的表达。        其中,团队选择了新西兰兔作为动物模型,用电子血管代替了颈总动脉。并通过多普勒超声成像和动脉造影监测了植入的电子血管。据多普勒超声成像显示,植入后3个月,电子血管允许稳定的血流通过,这也表明了电子血管出色的通畅性。将来,该电子血管可以与其他电子组件和设备集成在一起,以实现诊断和治疗功能,并通过在血管组织-机器界面中建立直接连接来极大地增强个性化的医学功能。        成诗宇、杭晨、丁力为论文的共同第一作者,蒋兴宇(南科大)张岩(阜外医院)为论文通讯作者。   论文链接: https://www.sciencedirect.com/science/article/pii/S2590238520304938 论文免费下载链接: https://authors.elsevier.com/a/1c0mP9CyxcukKg     供稿单位:生物医学工程系 通讯员:杭晨、肖然 编辑:程雯璟 主图设计:丘妍

2020-10-10 | 科研新闻

南科大李凯团队在近红外二区成像材料设计及其生物医学应用中取得多项研究成果

       近日,南方科技大学生物医学工程系副教授李凯课题组与合作课题组在近红外二区成像材料设计及其在生物医学诊断领域中取得多项研究成果进展,相继在Angewandte Chemie International Edition, Biomaterials, Research等领域内知名期刊发表了4篇论文。研究团队通过理论计算验证其设计理念和策略,得到了多种具有近红外二区光学活性的高性能光声及荧光成像材料,并将其成功应用于血管成像、肿瘤检测等研究领域。   酯基修饰的新型半导体聚合物光声成像示踪剂,用于监测肿瘤生长        基于光声成像在深层组织中具有较低的光散射及较高的时空分辨率等优势,其已经发展成为一个热门的研究领域,社会对理想的光声造影剂的需求也日益增大。然而,由于可以指导构建高效光声造影剂的理论体系还未被广泛建立,这在一定程度上限制了光声成像的发展。为了解决这个问题,李凯课题组联合香港城市大学及高雄科技大学的合作者,提出了一种基于BDT-TQ结构的新型半导体聚合物分子设计体系,并将其应用于光声成像。该体系随着烷氧基苯基、烷基噻吩基、酯基等取代基吸电子能力的增强,分子的最低非占有轨道能级逐渐降低,从而实现了吸收波段从近红外一区(NIR-I)至近红外二区(NIR-II)的红移。其中,酯取代的半导体聚合物分子(BDT-TQE)具有较强的扭曲分子内电荷转移(TICT)效应,在激发状态下显示出极具减弱的荧光以及增强的光声信号。通过理论计算深入分析BDT-TQE的简化单元(s-BDT-TQE)后,研究人员发现该分子具有较高的重整能及较低的绝热能,因而在激发态下可以产生更强的光致非辐射跃迁(PNRD)效应。因此,以BDT-TQE为核心的光声造影剂显示出了高效的光热转换效率及优良的光声性能,并成功实现了对4T1皮下肿瘤和HepG2肝原位肿瘤生长的长期监测。该研究团队与合作者提出的通过对聚合物链中TICT效应的调节来增强其非辐射跃迁(PNRD)特性的策略,能够大大提高半导体聚合物造影剂的光热转换和光声性能,可在活体成像中实现较高的信噪比。 图1. 通过分子结构设计,提升半导体聚合物的非辐射跃迁效率,利用近红外二区光声成像实现对肿瘤生长的长效实时监测。        相关研究成果发表在化学领域顶级期刊Angewandte Chemie International Edition上。南科大生物医学工程系2019级硕士研究生查梦蕾为论文第一作者,李凯为论文通讯作者,南科大为论文第一通讯单位。   自组装包覆策略制备聚集诱导发光纳米探针,应用于多尺度近红外二区血管成像        近年来,具有聚集诱导发光性质的荧光探针(AIEgens)在生物医学领域受到了广泛关注。最常见的水溶性AIEgens制备策略是通过功能性高分子聚合物把疏水的AIE分子包覆成为可以在水中稳定分散的纳米微粒。虽然该方法简单易实施,但其难以达到较好的尺寸与负载率的均一性。因此,开发可实现尺寸均一且负载率稳定的AIEgens的制备策略仍然是一个挑战。基于此,李凯课题组开发了一种由疏水性供体-受体-供体(D-A-D)核心和亲水性聚乙二醇(PEG)链构成的两亲性AIEgens(TTB-PEG1000),并与中国科学院深圳先进技术研究院合作团队实现了其在大动物模型中的成像应用。通过自组装的策略可得到在水中稳定分散的纳米探针(粒径为35 nm),该探针不仅具备超过1000 nm的最大发射峰和超过10%的荧光量子产率(QYs)的高效光学性能,而且还具备粒径尺寸均一且稳定的物理性能。研究团队利用此纳米探针,在小鼠和新西兰兔模型上实现了多尺度近红外二区荧光成像。成像结果显示,可实现在体分辨率达到~38 μm, 穿透深度为~1 cm。因此,研究团队所设计的高效自组装方策略可有效构建高性能AIE纳米荧光探针,对近红外二区自组装AIEgens的设计开发及其在血管成像中的应用具有指导意义。 图2. 自组装策略制备聚集诱导发光纳米探针,实现多尺度近红外二区血管成像。        相关研究成果发表在生物材料领域顶级学术期刊Biomaterials上。2018级南科大-哈尔滨工业大学联培博士研究生李迓曦为论文第一作者,李凯为论文通讯作者,南科大为论文第一通讯单位。   近红外二区聚集诱导发光探针在灵长类动物中的应用研究 在生物医学荧光成像中,AIEgens扮演着越来越重要的角色。然而,目前还缺乏深入的毒理研究以及在灵长类动物模型中深层成像评估。针对这一问题,南科大李凯课题组联合香港科技大学与中科院深圳先进技术研究院合作团队,共同研究了AIE点在高静脉注射剂量(已用于临床的吲哚菁绿,ICG,静脉注射剂量的30倍以上)的情况下,灵长类动物的血液和组织学分析报告。结果显示,AIE点在灵长类动物体内代谢35天后各项指标均在正常范围,证明了该AIE点无生物毒性。利用AIE点的生物安全性及高亮的光学性能,合作团队成功实现了在灵长类动物体内深度达1.5cm的血管成像,突破了当前近红外二区荧光成像在毫米级别的限制。因此,基于AIE点的无毒特性以及深层高分辨荧光成像性能,可进一步促进AIE点在临床前应用及转化研究。 图3. 近红外二区聚集诱导发光探针实现了在灵长类动物体内深度达1.5cm的高信噪比血管成像。        相关研究成果发表在Research上,该期刊是中国科协与美国科学促进会于2018年共同创办的国际化、高水平、综合性、大型英文科技期刊,与Science在同一个网络出版平台和数据库运营,是Science自1880年创刊以来第一本合作期刊。李迓曦为论文第二作者,李凯为论文共同通讯作者,南科大为论文通讯单位。   用新型微流控合成策略制备小于10 nm聚集诱导发光量子点,实现减少肝脏截留及增强肿瘤靶向性        通过和磷脂杂化得到的AIE点(AIE dots)已经被广泛应用于生物医学成像领域。然而,传统方法制备的AIE点的粒径通常大于25 nm,该类大粒径的AIE点由于肝脏、脾脏等器官的截留,往往难以得到理想的成像效果。为解决这一难题,我校生物医学工程系微流控-纳米生物医学实验室与李凯课题组合作,通过微流控技术成功将AIE点的尺寸调控至10 nm以下。该项研究利用一种具备双螺旋混合管道的微流控芯片(管道宽300微米,高60微米)制备AIE纳米微粒,该芯片可将管道内流速增至240 mL/h,大大缩短了混合时间,并显著降低了纳米颗粒粒径(小于10 nm)。研究团队利用此新型微流控合成策略成功制备了4种不同分子结构的AIE量子点,说明该策略对不同种类AIE分子具有普适性。生物成像结果显示,相较于>25 nm的AIE点,尺寸更小的AIE量子点可在6小时内将细胞摄取量增加10倍左右;AIE量子点可增强85%左右的肿瘤靶向性,减少35%左右的肝脏截留和55%左右的脾脏截留。这种生物性质上的量子效应说明AIE量子点可能比传统AIE点(>25 nm)更适合于细胞标记和肿瘤诊疗方面的应用。 图4. 新型微流控合成策略制备小于10 nm聚集诱导发光量子点,在荷瘤小鼠体内实现减少肝脏截留及增强肿瘤靶向性。        相关研究成果发表在化学领域顶级期刊Angewandte Chemie International Edition上。查梦蕾为论文共同第一作者,其他作者包括生物医学工程系博士后康天怿、杨光、唐浩及李迓曦等,李凯为共同通讯作者,南科大为论文通讯单位。     相关论文链接: https://onlinelibrary.wiley.com/doi/abs/10.1002/anie.202010228 https://www.sciencedirect.com/science/article/pii/S0142961220306116 https://doi.org/10.34133/2020/4074593 https://onlinelibrary.wiley.com/doi/10.1002/anie.202008564     供稿: 李凯老师课题组 通讯员:肖然 编辑:苗雪宁 主图设计:丘妍

2020-09-30 | 教学新闻

2020年生物医学工程系迎新晚会顺利举办

       为了促进新生们之间相互了解,帮助新生们尽快融入生医工系的和谐氛围,生物医学工程系于2020年9月27日晚,在学生宿舍11栋101活动室举办了生物医学工程系2020年迎新晚会。我系多位老师亲临现场,与同学们展开互动交流。 晚会现场        一开场,系主任蒋兴宇讲席教授就代表了全系为在场师生远程致辞,向同学们全面地介绍了生物医学工程专业的特点,指出了大家日后的努力方向,为同学们之后的学习之路提供了许多建议。随后,副系主任吴长锋教授向新加入生医工系的本科生、研究生致以了衷心的祝贺和热烈的欢迎。 吴长锋教授致词       随着主持人莫轩丞、吴雨桐宣布晚会正式开幕,场内气氛立刻被点燃。首个节目是王圻和袁恒宸带来的甜蜜歌曲《被风吹过的夏天》,两位同学嗓音相和,配合默契,让全场如沐夏日清风般清爽。 王圻同学演唱 袁恒宸同学演唱 主持人莫轩丞、吴雨桐        紧接着是张慕禹同学的街舞表演《莲》,整支舞蹈不仅有强烈的节拍和舞动,更多了一些中国风的韵律和节奏,打破了大家对街舞的刻板印象。 张慕禹同学表演        随后,尹沫文带来了一首《破晓将至》,穿透性极强的嗓音将对梦想和未来的希冀揉碎在旋律里,同时也赢得了全场的喝彩。 尹沫文同学演唱        下一个节目则是全场唯一的非新生节目《光&忽然之间》,由徐佳仪和陈柠柠共同演绎的吉他&尤克里里弹唱,传达了老生们对新同学们的欢迎与热情。 徐佳仪同学和陈柠柠同学演唱       如果说 甄一淳演唱的《好久不见》醇绵悠长,如一杯浓郁的咖啡;那郑芙嘉演唱的《LIABILITY》就更加地利落清爽,似一碗清甜的龙井。 甄一淳同学演唱 郑芙嘉同学演唱        蔡浩添神奇的魔术令人眼前一亮,林沛阳演唱的《钟意你》也意味深长。 蔡浩添同学表演 林沛阳同学表演        最后,随着神秘环节——为莫轩丞和林沛阳同学过生日的环节到来,全场齐唱生日歌将晚会推向了最高潮。 为莫轩丞、林沛阳同学庆生        晚会中还穿插着《听歌识曲》、《你画我猜》、《JUST DANCE》等游戏活动,带动了全场气氛,我系何俊龙、陈放怡、唐斌、刘泉影等多位老师上台参与,与同学们一起共享了游戏的快乐时光。 游戏环节 游戏环节        最后,副系主任吴长锋教授为2019级生物医学工程系本科生班委颁发了聘书,晚会在欢乐和谐的氛围中圆满落幕。对于2019级新生物医学工程系er而言,新的征途从今天刚刚开始,祝愿所有的生医工学子都能在追梦之路上坚定向前,谱写更美好的篇章。       文字:黄裕清、肖然 图片:郑芙嘉、张菁、肖然

2020-09-18 | 科研新闻

厦门大学刘刚教授来我系开展学术报告

       2020年9月18日,应我系郭琼玉助理教授邀请,厦门大学刘刚教授来我系进行访问交流,并开展了题为“分子影像探针设计、构建及临床转化研究”的学术报告。 会议现场        刘刚教授团队主要围绕肿瘤精准诊疗关键科学和技术问题,在分子影像探针领域进行深入系统的研究。为了实现肿瘤光热治疗、荧光成像、核磁成像等效果,设计了聚多巴胺修饰的F3O4纳米探针;为了提高载体肿瘤靶向效率,设计了锰片载体的递送系统,提高了肿瘤的靶向效率;刘教授团队设计了系列新型的高灵敏度多模态分子影像探针,提高了细胞/分子成像示踪监测的精确性并进行临床转化。为了进一步提高肿瘤手术切除的精确度,通过超临界混合技术将碘化油与吲哚菁绿均匀混合,提高了吲哚菁绿在碘化油中的稳定性,同时在肿瘤精确切除中起到良好效果。        最后,基于Exosomes具有非常好的载体递送特性,刘教授介绍了应用基因工程及原位组装技术将抗体、多肽等靶向分子构建到Exosomes表面,制备了多功能生物医用载药体系,建立了基于仿生细胞分子定向锚定的肿瘤靶向药物递送系统和诊疗一体化新策略。讲座结束后,同学们就分子影像探针设计、超临界技术等相关问题与刘教授进行了深入的交流探讨。   文字:高雅楠

2020-09-07 | 科研新闻

深圳市科技创新委党组书记兼副主任邱宣等到访我系

       2020年9月4日下午,深圳市科技创新委党组书记兼副主任邱宣一行6人到访我系进行调研,深圳市政协副主席、致公党深圳市委会主委、我系兼职教授王大平,校党委书记郭雨蓉,协理副校长、前沿与交叉科学研究院院长、科研部部长、讲席教授赵予生,科研部副部长、电子与电气工程系教授贡毅,生物医学工程系主任、讲席教授蒋兴宇及我系教研序列教授代表参与了调研座谈。 邱宣书记        座谈上赵予生校长和贡毅部长分别介绍了我校重点科研工作进展与科研项目相关工作基本情况。郭雨蓉书记表示,在各级政府部门领导支持下,学校整体发展情况良好,“2020泰晤士高等教育亚洲大学排名”中中国内地有81所高校上榜,南方科技大学位列中国内地高校第8位,亚洲第33位,这令我们备受鼓舞,作为年轻学校我们还要继续努力。南科大作为教育统筹综合改革的试验田,非常感谢深圳市科创委对我们一直以来不遗余力的支持,南科大将继续在人才培养、成果转化、技术创新、深港合作与国际化等方面为深圳经济建设与发展做出应有贡献。        邱宣书记指出,为促进深圳市生物医药产业发展,《深圳市促进生物医药产业集聚发展的指导意见》及《深圳市生物医药产业集聚发展实施方案(2020-2025年)》、《深圳市生物医药产业发展行动计划(2020-2025年)》、《深圳市促进生物医药产业集聚发展的若干措施》四文件同时出台,力度空前。生物和生命健康产业可谓目前最富活力的新兴产业之一,也是全球未来产业竞争的热点领域。深圳的生物医药产业虽然不具有先天优势,体量不大,但是后发优势明显:该产业发展到了新阶段,需要大量的资金,而深圳的资金实力雄厚。高校科技工作应进一步突出重点,与国家战略目标更好衔接,为实现科技强国、教育强国目标,发挥战略支撑作用。        邱宣书记表示,生物医学工程系近期引入了以王大平教授、吴德成讲席教授为代表的多个优秀高端人才科研团队,发展势头强劲。生物医学工程系前瞻布局人工智能、精准医疗等发展热点令人印象深刻,未来可期,大有所为。       邱宣书记对蒋兴宇老师关于在南科大尽快搭建深圳市小动物成像平台的想法表示认可,成像平台的建立是为深圳市的科研,特别是生物医药产业研发这块来进行使用,让每一个小企业来建立类似平台可能很难实现,深圳市政府通过统筹可以集中力量办大事,建设大平台,为企业和其他科研机构服务,这种平台最好是依托像南科大这样的高校成立,成像平台也一定是面向深圳市、广东省甚至全世界公众开放服务使用,资源共享的。         王大平主席提出,南科大应考虑建立一个医疗器械培训中心,用于让一线医生接触到一线先进的研发技术,通过这个培训中心,把最先进最前沿的生物医学技术介绍给医生并实现运用,如此良性循环,南科大将会对深圳市的医疗水平的大幅提高起到很大的帮助。        蒋兴宇系主任会上汇报了我系近年来取得的主要教学科研成就,他强调,特别感谢市科创委 对我校及我系的认可,深圳创造产出也很喜人,蒋兴宇老师本人作为首席科学家拿下了南科大首个国家重点研发计划,我系国家、省市级科研团队和人才项目也有多项入选。在技术应用方面我系也非常重视跟深圳市企业的合作,协助转型,参与高端前沿研究。生物医学工程系将继续整合世界一流的技术,吸引国内国际上一流的人才加入,争取更大的科研突破。        王大平主席表示,深圳在医疗、教育等方面存在需要长期耕耘,要想实现“民生幸福标杆”,要求非常高,发展好南方科技大学生物医学工程系不仅事关民生,更事关深圳的创新后劲和人才储备。我校和我系要找准切入点,比如以服务于深圳市所有的健康产业为出发点,主动对接、主动服务国家重大战略,建设一批国际交流合作平台,提升国际合作交流水平,广泛开展人员培训与交流、技术转移和成果转化。        会议座谈后,邱宣等人参观了我系智能骨科重点实验室。参与此次走访的代表还包括市科技创新委生物科技处处长黎慧来、市科技创新委生物科技处副处长付秀芹、市科技创新委基础研究和平台基地处胡怀江、市科技创新委生物科技处杨明明、市科技创新委生物科技处卢建等。   文字:张艺真

2020-07-16 | 综合新闻

张东晓副校长到访我系听取工作汇报

       2020年7月16日,我校副校长、教务长张东晓讲席教授到访我系,在我系324会议室听取了系主任蒋兴宇讲席教授、副系主任奚磊副教授、教授代表陈放怡副教授对我系现状和改革进展做的报告。        会议上,蒋兴宇老师汇报了近期我系的重点工作主要包括本科新专业以及博士点的申请。关于博士点申请,蒋兴宇老师表示,博士点我们从非常早就开始谋划准备,目前我们系所有申请指标全部达标。并且在全国有博士点的高校数量中,生物医学工程专业是比较少的,国务院评议小组也特别希望增加生物医学工程专业博士点数量。总体规划上说,生医工系的博士点希望能得到学校的支持,我们也有信心发展进入国内专业前十。        张校长表示,对于学科点发展申报工作,学校层面一定会给予支持。生医工系在短时间内发展势头喜人,教授队伍非常年轻且有干劲,研究质量产出很高。此外,张校长强调,南科大生医工系的发展一定要有特色,要注重发掘和培养,打造小而精的发展典范。教授们(特别是年轻教授们)在国内和国际科研领域里要注重交流和曝光度,我校生医工的公共经费支持和人才招聘政策在全国范围内是非常有优势的。同时,张校长还鼓励我系年轻教授们多和领域内的项尖人才交流,注重创新发展。强调只有系里的人才发展好了,学院才能发展好,学校才能发展好,才能持续为人才们提供更好的发展平台,从而形成良性循环。   文字:张艺真

2020-07-14 | 科研新闻

电子科技大学顾实教授为我系开展线上讲座报告

       2020年7月3日电子科技大学顾实教授受南方科技大学生物医学工程系刘泉影助理教授邀请,在生物医学工程系生物医学讲堂进行了题为《脑网络控制理论分析》的讲座。本文为该讲座的总结推文。        本讲座中,顾实教授分别从研究动机、拟解决的问题、理论基础、临床应用等角度介绍了其团队在脑网络控制理论方面的多个工作。   1. 研究动机与科学问题        对脑网络的控制的研究,主要有如下三个方面的动机:        研究动机1是脑网络控制能用于认知控制(cognitive control)。认知控制是一个复杂的人类认知神经过程。在认知任务中,它涉及到认知状态的转换。之前的一些研究通过激活地图(activation map)的方法探究大脑哪些区域会牵涉(involve)到认知控制的过程中,但是这样的研究缺乏在神经机制上的解释。网络神经科学(network neuroscience)的发展则从网络的角度寻求解释:牵涉到的大脑hub区域是怎么参与到整个认知调控过程中。        研究动机2是它能用于大脑动态重构(Brain Dynamic Reconfiguration),即在静态结构的基础上,关注动态结构的转换。Bassett et al. (2013)通过研究在不同的时间窗口内动态脑网络连接结构的调整,发现网络拓扑结构可能是跟认知能力、认知过程等有关。动态重构大脑能揭示哪些脑网络模块化结构(module structure)发生了变化,从网络动力学模型的角度,而不是简单的从数据驱动的角度,对网络随时间的变化进行解释。        研究动机3是脑网络控制能用于神经疾病临床治疗(Clinical Treatment of Neural Disorder)。在治疗精神疾病过程中,可能会采取脑刺激干涉的方法,比如利用经颅磁刺激技术(TMS)刺激大脑特定区域,以激活或者抑制某些脑区。现有的研究一般是基于经验规律选择某些区域施加信号,而通过网络控制理论构建区域间影响的研究范式,可以设计更优化的治疗方案,甚至一些试探性的结果。这些结果使得对神经反馈(neuralfeedback)、干预(intervention)从经验性方法上升为具有系统性理论保障的科学体系。        基于上述3个研究动机,构建脑网络控制理论,以解答如下三个科学问题:        科学问题1: 对脑网络的调控、动态网络调整、认知过程的状态转换(state transition)都需要考虑到一个最基本的问题,即如何去定义、表达大脑状态以及描述状态间的转换,如何使用连续、离散或其他方法把它与可测神经信息结合起来。        科学问题2: 如何度量一个脑区对整个系统动态的影响:即如何从网络的角度,考虑整个神经系统的状态变化,及其所涉及的多个脑区间的联系;如何从理论出发,量化某种干预(intervention)在不同脑区的影响;如何去度量每个脑区对整体动力学的影响。        科学问题3: 如何建立动力学模型与实际应用之间的联系,实现理论与实际相结合。   2. 脑网络与动态        脑网络基本构造分为两种,结构脑网络和功能脑网络。结构脑网络一般基于弥散张量成像(Diffusion Tensor Image, DTI)。功能脑网络一般基于功能核磁BOLD信号,或者基于电生理eeg、meg信号。        在构建脑网络的过程中,首先对影像进行预处理,然后结合模板将大脑分成不同的区域。接着基于不同的构造边(edge)的方式把不同区域作为节点(node),形成节点间的连接矩阵。对于DTI,使用的是构造性连接的数目、密度等等具体的指标。对于功能性脑网络,可以直接从时间序列出发开展相关性分析,得到脑网络图(graph)。构造脑网络图后,进一步结合图论(graph theory)的方法对图的网络性质进行研究。        这里使用最一般的动力学方程来描述大尺度脑网络中大脑的状态(state)及其状态转换(state transition)。x(t)表示每个区域的状态信息,它的值可以是观测到的信号,比如说像BOLD信号。假设有n个区域,x(t)构成一个n*1的向量,它表征所研究系统在t时刻的状态。最简单的微分方程就是说把它的导数写成依赖于它当前状态的一个函数f。具体的建模依赖于怎么定义f。最简单f函数就是线性模型,复杂的f也可以是高阶模型等等。        下面是一个简化的模型,它考虑了不同区域之间的相互作用,比如第i个区域它的导数依赖于自身的状态变化f_i。相互作用即不同区域对i区域的一个影响。tau_{ij}表示时间的延迟,W_{ij}表示两个节点间的权值,S表示非线性转移函数。对于具体功能的脑网络,我们需要推断系统的变换参数。对于结构脑网络,可以假设这个f_i可能的形式,W_{ij}则可能以某种形式依赖于它的连接状况。        基于这个模型,可以开始尝试性的探究动力系统的过程。比如研究系统可控性、控制能量、系统干预(intervention)等。 3. 大脑控制模型与系统可控性和稳定性        从控制的角度出发,讲述如何对大脑网络进行控制。第一个图是经典的工程控制过程。为了维持系统的正常运行,从当前的状态校正到期望的状态。在每个时刻,通过测量系统状态信息与期望状态的误差,通过设计系统控制器,以降低误差的形式进行系统调控。第二个图是将类似的思想用于脑网络控制,例如对于大脑的状态转换的控制。比如任务状态切换、区域激活抑制或者区域信号加强等。大脑内部区域抑制某些区域的信号,通过把某些区域当做控制区域,信号从这些区域输入,从而影响整个大脑的激活状态;或者说连接情况的改变,使得大脑从当前状态转移到目标状态,从而实现认知控制的过程。        那么怎么类比于工程控制的过程,用相应的控制论方法探究大脑不同区域对整体动力学的影响呢?下面介绍了一个简单的线性模型。        这里列举了简单的线性、离散、无噪声动力学模型。假设t+1时刻的状态x(t+1)依赖于t时刻的状态转换A·x(t)以及相应的控制项B_K·u_K(t)。B_K是一个N*K矩阵,它表示在具体的状态转换过程中选择哪些区域作为控制区域。而u_K表征了在不同的时刻控制的具体形式。        具体的建模中,对结构脑网络,我们最初假设A是与脑结构连接矩阵有一定关联性。具体的关联性可以转换成Laplace,或者说除以一个系数,只需要保证整个系统的稳定性。B_K的选择取决于感兴趣的区域。把它设置成认为的与控制过程相关的区域,或者之前实验验证的区域,或者设置成所有区域以探究整体系统的性质。具体来说,u_K就是在研究过程中,可以基于可建模的动力学系统进行优化的外界控制,或者从能量最低或者路径最短角度进行设计,基于这些限制可以求解最优的u_K。        可控性(controllability)就是系统在给定外部输入,移动到目标状态的能力。如果每个状态都是可达的(reachable),这个系统就是可控的。从纯理论上来说就是:系统能否在t步时间内达到目标状态。从最开始的线性方程,通过推导得到前面t-1时刻可能性的输入,也就是这里所写的C矩阵的公式。如果这里所记的C矩阵是一个满秩矩阵,不管前面的x_t, x_0怎么变,总能选取一定的u值,使得方程成立。        系统的稳定性通过系统的同步性S进行度量,直观上理解这个度量指标就是特征值方差的倒数。公式中,d表示连接的平均强度,主要是用于正则化,消除掉边的连接强度因素。如果说特征值都靠的非常近,意味着大脑很容易就处于同一个模式(mode)。如果大脑都处于同一个模式,那么它整个状态的丰富性、灵活性都会受到比较大的影响,整体的效率(efficiency)也会下降。        当我们要改变这个系统,系统的可控性涉及到需要多少能量。需要能量很少,意味着这个系统很容易改变,也即这个系统更容易被控制。这里描述的是一个T步的离散的过程。连续过程可以转换成积分形式。这里控制能量定义为每个时刻的u的2次方做累加,这是一种最直观的方式。当然也可以采集不同形式进行定义,比如添加正则化等。定义好控制能量之后,可以通过极小化控制能量,来求解出每个时刻的u_K。 4. 脑网络上的控制系统        脑网络控制目前主要从结构和功能两个角度进行分析。具体动力学过程都是从类似的线性方程出发。差别在于连接矩阵的定义,包括具体的状态转移矩阵A和控制矩阵B的设置。        一是基于结构矩阵的分析。基于邻接矩阵,构造结构控制模型的A矩阵,我们使用节点的连接数目进行定义A矩阵,也可以使用流线(streamline)的密度(density)等等。如果有时间序列或者仅仅从结构出发,这种情况下B矩阵设为单位矩阵。        二是功能脑网络分析。这个时候可以使用不同区域的时间序列的信号推断状态转移矩阵A,考察不同区域之间的关联性。从功能连接的角度,不同区域之间的时间序列具有一定相关性。这个相关性可能是从某种程度编码一些交互(interaction)的具体模板(pattern)。例如,构造一个随机的动力学过程,通过推断A和B的具体值,然后基于推断的区域间的方差矩阵和区域间的有效连接,构造基于功能时间序列的控制方程,探究它们的控制集或者控制量等关系。 5. 脑网络控制系统的可控性 5.1 可控性度量        这里介绍两种可控性度量方法,平均可控性(average controllability)以及模式可控性(modal controllability)。        平均可控性主要是衡量单位能量下系统能达到不同状态的平均情况。也就是说,把一份能量放在哪些区域,平均来说它更容易影响到整个系统的变化。大家可以理解成,给定单位能量,能到达的状态的一个面积。在这种情况下,如果把这份能量放到连接边数比较多的区域,那么它就更容易影响其他相连接的区域。从平均的意义上,这些区域就是一个更有效的选择。        而模式可控性,它考虑相对来说最坏的情况。系统遍历它所有可能的球面,最坏的情况就是某些状态会消耗特别多的能量。在这个策略下,希望控制能量在最坏的情况下要最好。也就是说,在比较偏的连接比较少的区域,如果把影响施加在连接比较强的区域,那么控制能量分散较少部分到比较偏远的区域。也就是说,在改变最坏情况的时候,能量消耗就相对比较大。希望最坏情况最好,比较直观的策略就是直接控制这些区域。   5.2 可控性地图        这里展示了两种可控性的大脑地图(map)分布,即基于前面我们定义的度量,这两种可控性度量在大脑的具体哪些区域的数值比较高(红色),哪些脑区比较低(深蓝色)。左边展示了基于结构脑网络,右边展示了功能脑网络的具体情况。        可以发现两个脑网络的平均可控性是有区别的。整体数值比较高的区域都是连接比较强的。比如,结构脑网络,它倾向于去选择结构的hub,而功能脑网络倾向于选择功能的hub。基于这个策略,在默认网络中比较强连接的一些hub被选取为高效的控制节点。从某种程度上,解释了为什么在静息态下,默认网络的相对激活性会更高。因为相对常规的想法是在静息状态下,大脑处于相对低耗的状态,那么维持低耗的有效状态,就需要考虑在哪些区域影响整体使之更有效率。        前面提到的一些最坏情况也就是需要能量更多的情况,即相对更复杂的任务。在执行这些任务的时候,对应的控制区域就是它们自身。像frontal-parietal区域,不管从结构脑网络,或者从功能脑网络,相对来说在模式可控性(modal controllability)数值上相对更高。某种程度上也就帮助大家理解为什么说这些相对弱连接的区域它们的功能会更细化,有些时候也会更特殊的辅助大脑执行复杂任务。        这里用另一种方式展示大脑的可控性地图(controllability map),它是定义的认知度量在大脑上的分布与认知区域的关联性。这里的LV1其实是用线性回归(linear regression)得到的一些变量(variables),也可以理解成,用主成分分析方法看第一个主成分与第二个主成分可能覆盖哪些区域。可以看到,因为平均可控性涉及到整体平均的效率,所以和一些综合性指标,比如晶体认知(Crystallized Cognition)、流体智力(Fluid Intelligence)等综合性指标具有关联性。那么在这些关联的区域上,其可控性的差别能显示出个体差异(Individual Differences)。相应的在模式可控性,所定义的一些特征呈现负相关特性。 5.3 可控性的可靠性        在同一篇论文中,分析了另外两种度量:可重复(Reproducibility)和遗传性(Heritability)。        左图表示在同一个项目中,通过扫描多次,针对基线(baseline)做可重复性的时候,观测控制性度量的分布,验证分布的一致性,判断是否是随机的过程。但是这很大程度依赖于它的连接情况,即连接结构的可重复性。        右图反映了遗传性关系,观测遗传基因的表达,或者测量不同子代之间的亲代和子代之间的关联性。可以发现prefrontal的区域,在平均可控性上它的遗传性相对来说更高。而在模式可控性,遗传性更多的是在Pre-temporal和Supramarginal的区域,它可能是衡量可遗传的具体特征。   5.4 可控制之间关系        平均可控性和模式可控性两个度量(average controllability and modal controllability)之间具有一定的关联性。这种关联性依赖于不同矩阵的选择。如何刻画这两个度量,可以通过:1)它们自身的直接关联;2)随着时间推移或者神经发育的具体过程,两个度量之间具体的tradeoff关系。随着年龄的增长,更多的是两个都有所增强,还是说一部分能力去抵消或者促进另一方面能力的发展。Tang 2018年的论文,具体描述了模式可控性和平均可控性之间的tradeoff关系,是一种Pareto最优的方法,平均可控性跟整体的同步性具有负相关性。但从个体考虑,对brain做整体值考虑,平均可控性与模式可控性两者是呈现正向相关,但不是单纯的线性关系。        如果说不同区域有两种考察方法,一是对整个大脑定义一个具体的值(average across subject),另一个是对不同区域(average across region)。在这两种情况下,它们间的关系是不太一样。在Gu et al.(2015)论文中也发现,如果在区域取平均,以及在样本空间取平均,考察两者之间的关系,两者呈现出很强的负相关区域。总结性的说,模式可控性的分布和平均可控性的分布呈现出很强的负相关。但是从整体考虑的话,就包括像前面的平均可控性和模式可控性的关系,就不是简单的线性关系。而在功能脑网络的控制分析,相应的情况就会更复杂。因为它涉及到连接转换矩阵以及控制矩阵,矩阵的选择不再是单位矩阵,它涉及到区域间的具体作用。        不同的状态转移矩阵和控制矩阵的选择,会对两个度量之间的关系产生影响,它涉及到一些具体的设定,也就是说两个度量反映了脑网络上相应的拓扑性质,而这种拓扑性质是受到控制区域之间的关联,还有状态转移矩阵的影响。   5.5 可控性和图度量        这里探究说这两个控制度量跟传统度量(连接的度、communicability)之间的关联性。从结构的角度来说,连接性就是连接的度,就是把每个区域的连接情况,连接强度求和。平均可控性与连接的度呈现出很强的正相关,这是从样本空间上求平均得到每个区域的具体结果。        communicability可以理解成是在脑网络上从一个区域到另一个区域,路径长度的加权平均。实验发现communicability与可控性呈现出较强的正相关。从控制的角度,信号的传播(propagate)是沿着脑网络进行,random walk也是沿着同样的脑网络信息。基于这样的假设,控制网络会有具体的路径设置和筛选。右图是在功能脑网络上做的实验,基于功能连接方式(functional connectivity)以及有效连接(effective connectivity),实验发现基于有效连接,它与模式可控性呈现强的正相关,而平均可控性与功能连接有很强的负相关。   5.6 可控性的应用举例 应用实例1: 可控性预测任务表现        上图讨论了我们定义的度量与实际应用的关联。检验的标准涉及到它们是否能预测感兴趣的东西以及发现临床上不同群体之间的差异。这里从静息态以及工作记忆(working memory)两个角度进行分析,研究发现,在working memory task它们的预测精度相对更显著,在静息态下则相对不显著。        在具体的working memory task,我们可以发现平均可控性和模式可控性可以预测具体任务的分数。尤其在frontal和parietal脑区承担重要角色,从某个角度印证了这两个控制度量从某种程度确实是可以刻画大脑在认知任务的效率问题。 应用实例2:可控性标记双相情感障碍组 另一个例子,如果使用传统的度量标准,两组(Control group与bipolar disease)区分不显著。而采用平均可控性,control和bipolar disease两组呈现显著的差异。这从侧面印证了控制度量相对于传统的脑网络度量,具有更强的敏感性,是一种更灵敏的biomarker。 应用实例3: 可控性与TMS效果的关系        这是在TMS’ effect上的研究。在低模式可控性(Low Modal Controllability)以及高模式可控性(high modal controllability)的大脑区域上分别进行TMS的干涉。        在open language task中,在低模式可控性以及高模式可控性区域进行不同控制,呈现出不同的Log(RT),(RT: Response Time响应时间)。从某种程度初步验证了模型的可行性,因为在不同区域上的差异可进一步开展后续的研究,即如何去理解和利用这些差异。 应用实例4:控制能量鲁棒性区分轻度脑损伤        这个工作是验证灵敏性指标,从控制能量的角度定义系统的稳定性。比如说把某些区域从整个系统中移除,那么控制路径以及控制能量也会发生偏差。移除不同区域产生不同的影响,通过对整体求平均从某种程度上刻画系统的稳定性。        这个工作是基于轻度脑损伤mTBI(mild Traumatic Brain Injury)进行验证。使用控制度量,healthy group与mTBI group具有非常显著的统计差异。而使用传统的度量方法,比如度(degree)或者路径长度,聚类系数等等一些指标,就无法体现出这两组之间的统计差异。在具体的状态转移过程中,把相应的指标转换成能量指标,相对来说会更敏感及显著。如果可控性指标作为大脑整体的指标考虑的话,相当于从能量角度进行更灵敏的刻画,而不是简单的从connectivity关系的一个重复。 应用实例5:可控性支持神经发育        这个研究证明了可控性与神经发育的关系。结合图a和图b来看,在不同年龄段,发展的一个趋势是由变化,即tangent斜率决定的,在8到12岁和18到22岁,它们的tradeoff关系不是线性的。图c和图d为不同年龄段的平均可控性与模式可控性的tagent。平均可控性相对来说是一个线性变化。而模式可控性表示执行复杂任务,它的变化是一个非线性的过程。从8到12岁和18到22岁的发育过程,对于复杂任务的处理或者相对复杂任务的发育,呈现出非匀速的过程。平均可控性的tangent在两组之间相对没有差异,也就是说青春期之后的大脑的过程,可能涉及到两个度量之间的tradeoff,对复杂任务和平均任务来说,更多的是平均发育过程。 应用实例6: 可控性支持认知        这个图是Cui et al. elife(2020)的工作,它基于控制能量的角度,描述具体的认知任务中控制能量的关系。右图表示控制能量越低,任务的执行表现越好。这个与最初的观点一致,即控制能量低表明效率高,网络的控制效率高。相应的我们就猜测执行认知任务的效率也会更高。下面的调解分析(mediation analysis)支撑这个结果。 6. 未来发展方向 1.首先是把动态过程从线性到非线性的一个延拓。大脑是个非常复杂的非线性系统。如何比较好的平衡模型的复杂性及可研究性之间的关系,进一步通过构造相对合适的非线性模型刻画大脑的可控性。 2.针对功能脑网络,功能脑网络并不是一个stable的过程,如何添加temporal信息,并且在没有interaction的时候,如何去考虑外界随时间变化的信号,对刺激、对大脑的影响。 3.在具体的临床应用,针对健康人群或者疾病人群诊疗,我们需要设计科学有效又安全的干预方案,进而影响大脑动态,调控大脑的神经回路。并在实际应用中,验证和应用所提出来的理论假设。   Q & A Q1:请问使用不同时间分辨率重构出来的神经动力学系统的特征一致吗? A1:这个问题取决于你是否做temporal model。如果说就像我们刚刚所说的,其实是相对把连接做static的过程。在这种情况下,我们也试过使用不同的时间序列,得出来的结果相对比较稳定。因为很大程度上是对effective connectivity还有noise covariance的估计。如果说时间分辨率对这两个的估计不产生影响的话,那么推出来的结果它其实就比较稳定可靠。   Q2:请问controllability指标的灵敏度如何,能否与复杂的认知实验设计相结合? A2:这个是比较好的问题啊。根据我们之前和后面介绍的研究。不管是working memory,还有一些与结构相关的mTBI等等的指标。我们的经验是,跟认知还有整个系统的特征相关的性质、相关的能力上还是比较灵敏的。但是具体的复杂认知实验,因为实验设计这块不是我的专长。我觉得如果这些任务跟整体性有关的话,相对应该是会比较敏感的。   Q3:controllability指标在不同意识状态下是否会一样的。比如说麻醉状态或者昏迷状态。 A3:比如说它的一些指标,它本身也是要从信号角度出发。如果你所感兴趣的信号。在这两种状态下,呈现出差别,那么我们要问的问题是说controllability是否能从系统动力学的角度,或者从控制的角度去阐述系统的控制性。在这两种状态下是否有差别。如果说有差别,那么我们希望是这个指标,这个方式能去刻画。而如果定义的某种东西可能只是跟纯结构的关联性。那么,在麻醉或者说昏迷状态下,它的结构本身不发生变化。那么这个指标当然也不会发生变化。而如果你感兴趣的一些功能信号的具体的pattern发生了变化,那么这个pattern如何去影响系统的一些控制性。那么这是一个可以研究和探究的内容。   Q4: controllability这些指标是针对每个被试有个单个的数值,类似于度聚类系数这样的吗? A4:这个是可以的,就是你刚刚所说,你一方面把它具体算出来的话,像我们所谓average controllability,还有一些modal controllability这两个指标的话,每个个体,每个区域都是有一个值,然后你可以考虑到一些群体效应,既可以在subject level去求平均,也可以在region level去求平均。就是说,每个个体得到一个值,或者说每一个区域得到一个值,都是可以。   Q5:这套方法在eeg或者meg上应用是可行的吗? A5:是可以的,我们这边有个合作方(Scheid, B. H. 2020),他们做的是利用可控性去探究癫痫的一些性质,用的是eeg还有ecog的信号。   Q6:您使用到的指标,观察过结构网络连接和功能网络连接的关系吗? A6:我们之前有过一个工作。那个不是从控制角度出发,因为那个是从纯能量角度去构造的一个随机模型。就是说你可以从结构出发去预测功能。然后这里模型也是类似的啊。就是比如说你去刻画它的状态转换,就是基于结构去刻画它的状态转换,符合hemodynamic的过程,然后去预测功能连接,你就说通过这个模型去探究结构与功能之间的similarity,这样是可以的。   Q7:能否量化脑网络中加工中的自动化加工。神经信号活动本身的variability是否属于controllability的范畴。 A7:这是一个比较好的问题啊。但是这个具体去做的话可能涉及到一些具体的定义问题。就比如说神经活动本身的variability,这个variability是否涉及到它本身,而网络controllability的一些变化。比如说不同神经活动,它从连接上,或者说从时间序列在某段区域的变化,当然都是有区别的。那么从controllability的角度去阐述这个variability也是非常有意思的方向。这块工作我目前还没有做过,但是这个问题我觉得很有意思。   Q8:请问可控性度量和网络度量的相关性说明了什么问题呢? A8:他其实就是可靠性度量,尤其是比如说回到结构那个地方,我们其实可以看出来,他很大程度上是基于连接去定义了这么一个度量。因此其实它跟网络度量的一些相关性其实是相对比较可预测的结果。然后这里展示了他的一些关系,主要也是相当于去帮助大家理解它可能会是跟哪些网络度量,哪些跟传统网络度量之间可能会有一些什么联系。比如说像跟communicability,就是刚刚举得一个例子,communicability它相当于去刻画random walk,可是相对于比较random的信号的propagation。而control的话其实相当于说你有规律的去控制它的propagation,那么这两者之间就是,有什么差异性或者说有什么关联。主要是辅助理解,可控性度量跟传统网络度量的关联和差异。倒也不是为了说明什么具体的问题,也不存在是谁诱导出了谁的关系。   Q9:首先是为什么做结构网络的可控性研究,选用的是DTI这个模态啊,还有其他的模态吗?第二个问题是做功能网络的可控性研究,对时间序列的长度有要求吗?现在常用的时间长度是怎样的? A9:为什么选用DTI这个模态,因为我们一般做结构网络的话,你要有结构连接,然后结构连接DTI或者说DSI等等是比较常用的刻画区域和区域之间结构性连接的方式。所以我们就选用了DTI这个模态,然后功能可控性的话对时间序列的要求,我们之前用的是HCP的数据,时间序列长度还是有一定要求。因为时间序列过短的话,去估计noise covariance是没有什么问题,但是去估计effective connectivity问题的时候。在时间序列短的时候会很不稳定。最起码你的长度肯定是要比你的区域多。比如说,划分90个区域,你时间序列的长度200左右应该就没有什么问题。   Q10:功能可控性反映的是灰质类的信号,而DTI是白质。这样的话可能没有办法做一个比较。 A10:一般我们也没有去直接比较功能和结构可控性的特征。但是, DTI的白质其实也是你可以理解成他是上面那些灰质区域的一个连接,灰质区域一方面它本身有一些近距离的连接情况,但另一方面它也有一些通过白质的连接。所以你不能说这两个之间的信号就是完全独立开来。这也就是大家去研究结构和功能连接关系的同样的出发点。但你可能说去单纯比较它的可控性,也不能说完全就没法去做一个比较。因为出发点也是一样的嘛。就是说那些灰质区域它的一些连接跟白质不是一个独立的东西。 Q11:是否已经有比较方便的工具可以做这一类的控制分析。 A11:Bassett教授的网站上,他们分享的一些代码是我写的,有一些就是跟控制相关的一些工具。大家可以去他们那个网站上找。然后我们的话我前阵子也做了一个相关于论文的一个collection,我回头分享到群里面。大家感兴趣的话。可以去根据另一个论文的collection去找一些大家感兴趣的部分读一下。   Q12:能否找到一个指标去量化脑网络中的自动化加工。就是这个自动化加工,我个人的一个理解就是比如说你在静息状态下,他其实更多的是一个自发性的,比如说spontaneous activity或者是他是一个反应内在的,而不是说你是有意识去控制的这样一种活动。所以就比如说包括决策过程中,他有很多就是说bias。然后这个可能是自下而上的,或者说从subcortical到cortical的一个自下而上,或者是从情绪诱发的这样一种就是区别于纯粹的一个认知活动,就是里面可能包含了这一部分信息。然后我就是想知道就是说能不能有这样一个指标。因为controllability他是你可能更多的是跟自上而下的这样一种活动有关。那有没有一个指标可以量化,这种就是自下而上的这种活动。然后因为我看到就是说您那个就是用controllability去预测它的那个resting state那个activity他的效果不是很好,因为静息状态下,它更多的是一种自发性的一个信号。所以我觉得这可能是一个原因之一。 A12:我觉得这个点挺好啊。然后我再稍微说一下那个地方我们是拿静息态去刻画它的一些任务的执行情况。这个可能是有这方面的原因。您刚刚也说了,静息态可能是说涉及到一些自发性的,不一定涉及到它具体任务的执行的效率。那么自发性的去预测它整体效率的执行,就相对可能不是一个feasible的事情。但是controllability度量本身就不管用,从结构可控性还是功能可控性。就是从功能可控性的角度来说,他对静息态和功能态两个本身其实是非常明显的。但只是今天做slides的时候,就是没有去把这一块作为一个特征给他放出来。我们那个论文里面,我们已经挂在arxiv (Deng, S. (2020)),然后是可以看到里面也列了它在对静息态还有功能态本身的区别。     顾老师推荐: 1. Must-read papers on Brain Control Analysis https://nangongwubu.github.io/posts/2020/06/blog-post-3/   2. Controllability of Structural Brain Networks Toolbox: https://complexsystemsupenn.com/s/controllability_code-smb8.zip     参考文献: Cole, M. W., & Schneider, W. (2007). The cognitive control network: integrated cortical regions with dissociable functions. Neuroimage, 37(1), 343-360. Bassett, D. S., Wymbs, N. F., Rombach, M. P., Porter, M. A., Mucha, P. J., & Grafton, S. T. (2013). Task-based core-periphery organization of human brain dynamics. PLoS Comput Biol, 9(9), e1003171. Tang, E., Giusti, C., Baum, G. L., Gu, S., Pollock, E., Kahn, A. E., … & Gur, R. E. (2017). Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nature communications, 8(1), 1-16. Lee, W. H., Rodrigue, A., Glahn, D. C., Bassett, D. S., & Frangou, S. (2020). Heritability and cognitive relevance of structural brain controllability. Cerebral Cortex, 30(5), 3044-3054. Tang, E., Giusti, C., Baum, G. L., Gu, S., Pollock, E., Kahn, A. E., … & Gur, R. E. (2017). Developmental increases in white matter network controllability support a growing diversity of brain dynamics. Nature communications, 8(1), 1-16. Deng, S., & Gu, S. (2020). Controllability Analysis of Functional Brain Networks. arXiv preprint arXiv:2003.08278. Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Alfred, B. Y., Kahn, A. E., … & Bassett, D. S. (2015). Controllability of structural brain networks. Nature communications, 6(1), 1-10. Gu, S., Betzel, R. F., Mattar, M. G., Cieslak, M., Delio, P. R., Grafton, S. T., … & Bassett, D. S. (2017). Optimal trajectories of brain state transitions. Neuroimage, 148, 305-317. Jeganathan, J., Perry, A., Bassett, D. S., Roberts, G., Mitchell, P. B., & Breakspear, M. (2018). Fronto-limbic dysconnectivity leads to impaired brain network controllability in young people with bipolar disorder and those at high genetic risk. NeuroImage: Clinical, 19, 71-81. Medaglia, J. D., Harvey, D. Y., White, N., Kelkar, A., Zimmerman, J., Bassett, D. S., & Hamilton, R. H. (2018). Network controllability in the inferior frontal gyrus relates to controlled language variability and susceptibility to TMS. Journal of Neuroscience, 38(28), 6399-6410. Cui, Z., Stiso, J., Baum, G. L., Kim, J. Z., Roalf, D. R., Betzel, R. F., … & Ciric, R. (2020). Optimization of energy state transition trajectory supports the development of executive function during youth. Elife, 9, e53060. Scheid, B. H., Ashourvan, A., Stiso, J., Davis, K. A., Mikhail, F., Pasqualetti, F., … & Bassett, D. S. (2020). Time-evolving controllability of effective connectivity networks during seizure progression. arXiv preprint arXiv:2004.03059.   讲座观看地址: https://www.bilibili.com/video/BV1kk4y1q7vB?from=search&seid=8807585475690151569   写作:梁智超 校对:顾实、刘泉影 编辑:王海慧

联系我们

广东省深圳市南山区
学苑大道1088号

bme@sustech.edu.cn

关注微信公众号